454
Views
58
CrossRef citations to date
0
Altmetric
Articles

Soil compaction parameters prediction using GMDH-type neural network and genetic algorithm

&
Pages 449-462 | Received 11 Sep 2015, Accepted 21 Feb 2017, Published online: 23 Mar 2017

References

  • Al-Khafaji, A. N. (1993). Estimation of soil compaction parameters by means of Atterberg limits. Quarterly Journal of Engineering Geology and Hydrogeology, 26, 359–368. doi:10.1144/GSL.QJEGH.1993.026.004.10
  • Ardalan, H., Eslami, A., & Nariman-Zadeh, N. (2009). Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms. Computers and Geotechnics, 36, 616–625. doi:10.1016/j.compgeo.2008.09.003
  • ASTM D698. (2003). Standard test methods for laboratory compaction characteristics of soil using standard effort. West Conshohocken, PA: American Society for Testing and Materials (ASTM) International.
  • Atashkari, K., Nariman-Zadeh, N., Gölcü, M., Khalkhali, A., & Jamali, A. (2007). Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms. Energy Conversion and Management, 48, 1029–1041. doi:10.1016/j.enconman.2006.07.007
  • Das, B. M. (2010). Principles of geotechnical engineering (7th ed.). Stamford, CT: Cenage Learning.
  • Edincliler, A., Cabalar, A. F., & Cevik, A. (2013). Modelling dynamic behaviour of sand–waste tires mixtures using Neural Networks and Neuro-Fuzzy. European Journal of Environmental and Civil Engineering, 17, 720–741. doi:10.1080/19648189.2013.814552
  • Farlow, S. J. (1984). Self-organizing method in modelling: GMDH type algorithm (Vol. 54). New York, NY: CRC Press/Marcel Dekker.
  • Günaydın, O. (2009). Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environmental Geology, 57, 203–215. doi:10.1007/s00254-008-1300-6
  • Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. Systems, man and cybernetics. IEEE Transactions on, SMC -1, 364–378. doi:10.1109/TSMC.1971.4308320
  • Jamali, A., Nariman-zadeh, N., Darvizeh, A., Masoumi, A., & Hamrang, S. (2009). Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process. Engineering Applications of Artificial Intelligence, 22, 676–687. doi:10.1016/j.engappai.2008.11.005
  • Kalantary, F., Ardalan, H., & Nariman-Zadeh, N. (2009). An investigation on the Su–NSPT correlation using GMDH type neural networks and genetic algorithms. Engineering Geology, 104, 144–155. doi:10.1016/j.enggeo.2008.09.006
  • Kalantary, F., & Kordnaeij, A. (2012). Prediction of compression index using artificial neural network. Scientific Research and Essays, 7, 2835–2848. doi:10.5897/SRE12.297
  • Kang, F., Li, J. S., Wang, Y., & Li, J. (2016). Extreme learning machine-based surrogate model for analyzing system reliability of soil slopes. European Journal of Environmental and Civil Engineering, 1–22. doi:10.1080/19648189.2016.1169225 10.1080/19648189.2016.1169225
  • Kolay, E., & Baser, T. (2014). Estimating of the dry unit weight of compacted soils using general linear model and multi-layer perceptron neural networks. Applied Soft Computing, 18, 223–231. doi:10.1016/j.asoc.2014.01.033
  • Mohammadzadeh, S. D., Bolouri Bazaz, J., & Alavi, A. M. (2014). An evolutionary computational approach for formulation of compression index of fine-grained soils. Engineering Applications of Artificial Intelligence, 33, 58–68. doi:10.1016/j.engappai.2014.03.012
  • Mola-Abasi, H., Eslami, A., & Tabatabaeishorijeh, P. (2013). Shear wave velocity by polynomial neural networks and genetic algorithms based on geotechnical soil properties. Arabian Journal for Science and Engineering, 38, 829–838. doi:10.1007/s13369-012-0525-6
  • Momeni, M., Nazir, R., Jahed Armaghani, D., & Maizir, H. (2014). Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement, 57, 122–131. doi:10.1016/j.measurement.2014.08.007
  • Nariman-Zadeh, N., Darvizeh, A., & Ahmad-Zadeh, G. R. (2003). Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217, 779–790. doi:10.1243/09544050360673161
  • Proctor, R. R. (1933). Fundamental principles of soil compaction. Engineering News Record, 111, 245–248.
  • Rout, S. K. (2009). Prediction of relative density of sand with particular reference to compaction energy (Doctoral dissertation), National Institute of Technology, Rourkela.
  • Sridharan, A., & Nagaraj, H. B. (2005). Plastic limit and compaction characteristics of finegrained soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 9, 17–22. 10.1680/grim.2005.9.1.17
  • Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil mechanics in engineering practice. John Wiley and Sons, New York.
  • Tokar, S. A., & Johnson, P. A. (1999). Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4, 232–239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232)
  • Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87, 1423–1447. doi:10.1109/5.784219
  • Žlender, B., Jelušič, P., & Boumezerane, D. (2012). Planning geotechnical investigation using ANFIS. Geotechnical and Geological Engineering, 30, 975–989. doi:10.1007/s10706-012-9520-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.