126
Views
1
CrossRef citations to date
0
Altmetric
Articles

First cycle of desorption and sorption isotherms of carbonated and non-carbonated mortars and concretes using accelerated protocol

, , , &
Pages 1468-1481 | Received 24 Sep 2016, Accepted 14 Feb 2017, Published online: 03 Apr 2017

References

  • Al-Saleh, S. A., & Al-Zaid, R. Z. (2006). Effects of drying conditions, admixtures and specimen size on shrinkage strains. Cement and Concrete Research, 36, 1985–1991.
  • Auroy, M. (2014). Impact de la carbonatation sur les propriétés de transfert d’eau des matériaux cimentaires (Thèse de doctorat) [Impact of carbonation on water transfer properties of cementitious materials (Doctoral thesis)], Université Paris-Est.
  • Badmann, R., Stockhausen, N., & Setzer, M. J. (1981). The statistical thickness and the chemical potential of adsorbed water films. Journal of Colloid and Interface Science, 82, 534–542.
  • Baroghel-Bouny, V. (2007). Water vapour sorption experiments on hardened cementitious materials: Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure. cement and Concrete Research, 37, 414–437.
  • Baroghel-Bouny, V., Perrin, B., & Chemloul, L. (1997). Experimental determination of moisture properties of hardened cement pastes, showing hysteresis effects. Materials and Structures, 30, 340–348.10.1007/BF02480684
  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computation from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380.
  • Bier, T. A. (1987). Influence of type of cement and curing on carbonation progress and pore structure of hydrated cement pastes. Material Reasearch Society Symposium, 85, 123–134.
  • Brue, F., Davy, C. A., Skozylas, F., Burlion, N., & Bourbon, X. (2012). Effect of température on the water retention proporties of two high performance concretes. Cement and Concrete Research, 42, 384–396.
  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.
  • Burlion, N., Bourgeois, F., & Shao, J. F. (2005). Effects of desiccation on mechanical behaviour of concrete. Cement and Concrete Composites, 27, 367–379.
  • Coussy, O., Baroghel-Bouny, V., Dangla, P., & Mainguy, M. (2001). Evaluation de la perméabilité à l’eau liquide des bétons à partir de leur perte de masse durant le séchage [Evaluation of water permeability test of concrete from their loss of mass during drying]. Revue Française de Génie Civil, 5.
  • Drouet, E. (2010). Impact de la température sur la carbonatation des matériaux cimentaires : prise en compte des transferts hydriques [Impact of temperature on the carbonation of cementitious materials: taking account of water transfers], Ecole Normale Supérieure de Cachan (thèse de doctorat).
  • Espinosa, R. M., & Franke, L. (2006). Influence of the age and drying process on pore structure and sorption isotherms of hardened cement paste. Cement and Concrete Research, 36, 1969–1984.
  • Feng, C., Janssen, H., Wu, C., Feng, Y., & Meng, Q. (2013). Validating various measures to accelerate the static gravimetric sorption isotherm determination. Building and Environment, 69, 64–71.
  • Fernandez Bertos, M., Simons, S., Hills, C., & Carey, P. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials, 112, 193–205.
  • Houst, Y. F., & Wittmann, F. H. (1989). Le retrait de carbonatation du béton [The carbonation shrinkage of concrete]. IABSE symposium Lisbon: Surability of structures, AIPC, ZÜRICH, 57, 255–260.
  • Houst, Y. F., & Wittmann, F. H. (1994). Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste. Cement and Concrete Research, 24, 1165–1176.10.1016/0008-8846(94)90040-X
  • Hyvert, H. (2009). Application de l’approche probabiliste à la durabilité des produits préfabriqués en béton ( Thèse de doctorat). Toulouse: Université Paul Sabatier.
  • Johannesson, B., & Janz, M. (2002). Test of four different experimental methods to determine sorption isotherms. Journal of Materials in Civil Engineering (ASCE), 14, 471–477.
  • Kadlec, O., & Dubinin, M. M. (1969). Comments on the limits of applicability of the mechanism of capillary condensation. Journal of Colloid and Interface Science, 31, 479–89.
  • Mainguy, M. (1999). Modèles de diffusion non linéaires en milieux poreux. Application à la dissolution et au séchage des matériaux cimentaires [Nonlinear diffusion models in porous media. Application to the dissolution and drying of cementitious materials] ( PhD thesis). Ecole Nationale des Ponts et Chaussées.
  • McBain, J. W. (1935). An explanation of hysteresis in the hydration and dehydration of gels. Journal of the American Chemical Society, 57, 699–700.10.1021/ja01307a502
  • Miragliotta, R. (2000). Modélisation des processus physico-chimiques de la carbonatation des bétons préfabriqués - Prise en compte des effets de parois (Thèse de Doctorat) [Modeling of the physicochemical processes of the carbonation of precast concrete – Taking into account the wall effects (Doctoral thesis)]. Université de La Rochelle.
  • Morandeau, A. (2013). Carbonatation atmosphérique des systèmes cimentaires à faible teneur en portlandite (Thèse de Doctorat) [Atmospheric carbonation of low Portlandite content of cement systems (Doctoral thesis)]. Université Paris-Est.
  • Ngala, V. T., & Page, C. L. (1997). Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cement and Concrete Research, 27, 995–1007.10.1016/S0008-8846(97)00102-6
  • Omikrine Metalssi, O., Aït-Mokhtar, A., Turcry, P., & Ruot, B. (2012). Consequences of carbonation on microstructure and drying shrinkage of a mortar with cellulose ether. Construction and Building Materials, 34, 218–225.10.1016/j.conbuildmat.2012.02.044
  • Pihlajavaara, S. E. (1968). Some results of the effect of carbonation on the porosity and pore size distribution of cement paste. Materials and Structures, 1, 521–527.
  • Popovics, S. (1986). Effect of curing method and moisture condition on compressive strength of concrete. ACI Journal, 83, 650–657.
  • Powers, T. C., & Brownyard, T. L. (1948). Studies of the physical properties of hardened Portland cement paste. Research Laboratories of Portland Cement Association Bulletin, 22, 356.
  • Poyet, S. (2009). Experimental investigation of the effect of temperature on the first desorption isotherm of concrete. Cement and Concrete Research, 39, 1052–1059.
  • Ranaivomanana, H., Verdier, J., Sellier, A., & Bourbon, X. (2011). Toword a better comprehension and modeling of hysteresis cycles in the water sorption-desorption process for cement based materials. Cement and Concrete Research, 41, 817–827.
  • Rougelot, T. (2008). Etude expérimentale multi-échelles des couplages hydriques, mécaniques et chimiques dans les matériaux cimentaires ( Thèse de doctorat). Université des Sciences et Technologies de Lille.
  • Rougelot, T., Skoczylas, F., & Burlion, N. (2009). Water desorption and shrinkage in mortars and cement pastes: Experimental study and promechanical model. Cement and Concrete Research, 39, 36–44.
  • Swenson, E. G., & Serada, P. J. (1968). Mechanism of the carbonation shrinkage of lime and hydrated cement. Journal of Applied Chemistry, 18, 111–1117.
  • Trabelsi, A., Belarbi, R., Turcry, P., & Aït-Mokhtar, A. (2011). Water vapour desorption variability of in situ concrete and effects on drying simulation. Magazine of Concrete Research, 63, 333–342.
  • Trentin, K. (2010). Comortement T-H-M des bétons: Influence de la température sur les isothermes d’adsorption des matériaux cimentaires [T-H-M behavior of concrete: Influence of temperature on the adsorption isotherms of cementitious materials].
  • Verbeck, G. (2015). Carbonation of hydrated Portland Cement. ASTM Special Publication, 17–35.
  • Wittmann, F. H. (1972). Etude de la force d’adhésion en fonction du mouillage [Study of the adhesion strength as a function of wetting]. In Colloque EILEM (pp. 174–184). Toulouse.
  • Wittmann, F. H. (1976). The structure of hardened cement paste – a basis for a better understanding of the materials properties. In Proceedings Conference on Hydraulic Cement Pastes: Their Structure and Properties (pp. 69–117), April 8–9. Sheffield..
  • Wu, Q., Rougelot, T., Burlion, N., & Bourbon, X. (2014). Experimental investigation of the first desorption isotherm of a high performance concrete with thin sliced samples. Construction and Building Materials, 72, 389–397.
  • Xu, A. (1989). Water desorption isotherms of cement mortar with fly ash. Nord Concrete Research, 8, 9–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.