166
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Mesoscopic simulations of concrete strains incompatibilities under high creep stress level and consequences on the mechanical properties

, &
Pages 879-893 | Received 17 Oct 2016, Accepted 13 Apr 2017, Published online: 16 May 2017

References

  • Asamoto, S., Kato, K., & Maki, T. (2014). Effect of creep induction at an early age on subsequent prestress loss and structural response of prestressed concrete beam. Construction and Building Materials, 70, 158–164.10.1016/j.conbuildmat.2014.07.028
  • Bazant, Z. P., & Panula, L. (1978). Practical prediction of time-dependent deformations of concrete. Materials and Structures, RILEM, Part (1) Shrinkage and Part (2) Basic Creep, 11, 307–328.
  • Benboudjema, F., & Torrenti, J.-M. (2008). Early-age behaviour of concrete nuclear containments. Nuclear Engineering and Design, 238, 2495–2506.10.1016/j.nucengdes.2008.04.009
  • Briffaut, M., Benboudjema, F., Nahas, G., & Torrenti, J. M. (2010). A thermal active restrained shrinkage ring test to study the early age concrete behaviour of massive structures. Cement and concrete research, 41, 56–63.
  • Briffaut, M., Benboudjema, F., Torrenti, J.-M., & Nahas, G. (2011). Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Engineering Structures, 33, 1390–1401.10.1016/j.engstruct.2010.12.044
  • Briffaut, M., Benboudjema, F., Laborderie, C., & Torrenti, J.-M. (2013). Creep consideration effect on meso-scale modelling of concrete hydration process and consequences on the mechanical behavior. Journal of Engineering Mechanics, 139, 1808–1817.10.1061/(ASCE)EM.1943-7889.0000607
  • Brooks, J. J., & Neville, A. M. (1977). A comparison of creep, elasticity and strength of concrete in tension and in compression. Magazine of Concrete Research, 29, 131–141.10.1680/macr.1977.29.100.131
  • Cast3M finite element code Cast3m. (2016). Commissariat à l’Energie Atomique CEA – DEN/DM2S/SEMT, Cast3m finite element code. Retrieved from http://www-cast3m.cea.fr/
  • De Larrard, T. (2010). Variabilité des propriétés du béton: Caractérisation expérimentale et modélisation probabiliste de la lixiviation ( PhD thesis). ENS Cachan, Paris.
  • de Sa, C., Benboudjema, F., Thiery, M., & Sicard, J. (2008). Analysis of microcracking induced by differential drying shrinkage. Cement and Concrete Composites, 30, 947–956.10.1016/j.cemconcomp.2008.06.015
  • De Schutter, G. (1999). Degree of hydration based Kelvin model for the basic creep of early age concrete. Materials and Structures, 32, 260–265.10.1007/BF02479595
  • Feyel, F. (2003). A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Computer Methods in Applied Mechanics and Engineering, 192, 3233–3244.10.1016/S0045-7825(03)00348-7
  • Fichant, S., La Borderie, C., & Pijaudier-Cabot, G. (1999). Isotropic and anisotropic descriptions of damage in concrete structures. Mechanics of Cohesive-Frictional Material, 4, 339–359.10.1002/(ISSN)1099-1484
  • Fichant, S. (1996). Endommagement et Anisotropie Induite du Béton de Structures. Modélisations Approchées ( Phd thesis). ENS Cachan.
  • Grassl, P., & Pearce, C. (2010). Mesoscale approach to modeling concrete subjected to thermomechanical loading. Journal of Engineering Mechanics, 136, 322–328.10.1061/(ASCE)0733-9399(2010)136:3(322)
  • Grassl, P., Wong, H. S., & Buenfeld, N. R. (2010). Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar. Cement Concrete Research, 40, 85–93.10.1016/j.cemconres.2009.09.012
  • Grondin, F., Dumontet, H., Ben Hamida, A., & Boussa, H. (2011). Micromechanical contributions to the behaviour of cement-based materials: Two-scale modelling of cement paste and concrete in tension at high temperatures. Cement and Concrete Composites, 33, 424–435.10.1016/j.cemconcomp.2010.11.004
  • Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6, 773–781.10.1016/0008-8846(76)90007-7
  • Illston, J. M. (1965). The creep of concrete under uniaxial tension. Magazine of Concrete Research, 17, 77–84.10.1680/macr.1965.17.51.77
  • Ladaoui, W., Vidal, T., Sellier, A., & Bourbon, X. (2011). Effect of a temperature change from 20 to 50 °C on the basic creep of HPC and HPFRC. Materials and Structures, 44, 1629–1639.10.1617/s11527-011-9723-z
  • Lagier, F., Jourdain, X., De Sa, C., Benboudjema, F., & Colliat, J. B. (2011). Numerical strategies for prediction of drying cracks in heterogeneous materials: Comparison upon experimental results. Engineering Structures, 33, 920–931.10.1016/j.engstruct.2010.12.013
  • Mazars, J. (1984). Application de la mécanique de l'endommagement au comportement non linéaire et à la rupture du béton de structure ( PhD thesis). ENS Cachan.
  • Mazzotti, C., & Savoia, M. (2003). Nonlinear creep damage model for concrete under uniaxial compression. Journal of Engineering Mechanics, 129, 1065–1075.10.1061/(ASCE)0733-9399(2003)129:9(1065)
  • Nguyen, D., Lawrence, C., La Borderie, C., Matallah, M., & Nahas, G. (2010). A mesoscopic model for a better understanding of the transition from diffuse damage to localized damage. European Journal of Environment and Civil Engineering, 14, 751–776.10.1080/19648189.2010.9693261
  • Omar, M., Loukili, A., Pijaudier-Cabot, G., & Le Pape, Y. (2009). Creep damage coupled effects: Experimental investigations on bending beams of different sizes. Advanced Engineering Materials, 21, 65–72.
  • Ranaivomanana, N., Multon, S., & Turatsinze, A. (2013). Tensile, compressive and flexural basic creep of concrete at different stress levels. Cement and Concrete Research, 52, 1–10.10.1016/j.cemconres.2013.05.001
  • Reviron, N., Benboudjema, F., Torrenti, J. M., Nahas, G., & Millard, A. (2007). A coupling between creep and cracking in tension. FraMCos 6 – 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Italy.
  • Roll, F. (1964). Long time creep-recovery of highly stressed concrete cylinders. ACI Special publication no. 9 – Symposium on creep of concrete, 113–114.
  • Rossi, P., Tailhan, J. L., Le Maou, F., Gaillet, L., & Martin, E. (2012). Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cement and Concrete Research, 42, 61–73.10.1016/j.cemconres.2011.07.011
  • Saliba, J., Loukili, A., Grondin, F., & Regoin, J.-P. (2012a). Experimental study of creep-damage coupling in concrete by acoustic emission technique. Materials and Structures, 45, 1389–1401.10.1617/s11527-012-9840-3
  • Saliba, J., Grondin, F., Matallah, M., & Loukili, A. (2012b). Relevance of a mesoscopic modelling for the coupling between creep and damage in concrete. Mechanics of Time-Dependent Materials, 16.
  • Schlangen, E., Leegwater, G., & Koenders, E. A. B. (2006 September, 11–13). Modelling of autogenous shrinkage of concrete based on paste measurements. 2nd International Symposium on Advances in Concrete through Science and Engineering, Quebec City.
  • Sciumè, G., & Benboudjema, F. (2016). A viscoelastic unitary crack-opening strain tensor for crack width assessment in fractured concrete structures. Mechanics of Time-Dependent Materials, 1–21.
  • Sellier, A., Multon, S., Buffo-Lacarrière, L., Vidal, T., Bourbon, X., & Camps, G. (2016). Concrete creep modelling for structural applications: non-linearity, multi-axiality, hydration, temperature and drying effects. Cement and Concrete Research, 79, 301–315.
  • Sousa, Coutinho A. (1969). Note sur la rupture du béton maintenu à une contrainte constante. Matériaux et Constructions, 2, 49–57.
  • Sousa Coutinho, A. (1977). A contribution to the mechanism of concrete creep. Materials and Constructions, 10, 3–16.10.1007/BF02473583
  • Thai, M.-Q., Bary, B., & He, Q.-C. (2014). A homogenization-enriched viscodamage model for cement-based material creep. Engineering Fracture Mechanics, 126, 54–72.10.1016/j.engfracmech.2014.04.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.