289
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Influence of polypropylene fibres on the shear strength of RC beams with web reinforcement

&
Pages 1222-1234 | Received 29 Dec 2016, Accepted 16 May 2017, Published online: 28 Jun 2017

References

  • ACI Committee 544. (1996). ACI 544.1R-96: State-of-the-art report on fiber reinforced concrete (Reapproved 2009). Farmington Hills, MI: American Concrete Institute.
  • ACI Committee 318 (2014). ACI 318-14: Building code requirements for structural concrete and Commentary. Farmington Hills, MI: American Concrete Institute.
  • Adhikary, B. B., & Mutsuyoshi, H. (2006). Prediction of shear strength of steel fiber RC beams using neural networks. Construction and Building Materials, 20, 801–811.10.1016/j.conbuildmat.2005.01.047
  • Ahmed, E., Legeron, F., & Ouahla, M. (2015). Steel fiber as replacement of minimum shear reinforcement for one-way thick bridge slab. Construction and Building Materials, 78, 303–314.10.1016/j.conbuildmat.2014.12.095
  • Ahn, N., Jang, H., & Park, D. K. (2007). Presumption of shear strength of steel fiber reinforced concrete beam using artificial neural network model. Journal of Applied Polymer Science, 103, 2351–2358.10.1002/(ISSN)1097-4628
  • Almusallam, T., Ibrahim, S. M., Al-Salloum, Y., Abadel, A., & Abbas, H. (2016). Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cement and Concrete Composites, 74, 201–217.10.1016/j.cemconcomp.2016.10.002
  • Altoubat, S., Yazdanbakhsh, A., & Rieder, K.-A. (2009). Shear behavior of macro-synthetic fiber-reinforced concrete beams without stirrups. ACI Materials Journal, 106, 381–389.
  • Amin, A., & Foster, S. J. (2016). Shear strength of steel fibre reinforced concrete beams with stirrups. Engineering Structures, 111, 323–332.10.1016/j.engstruct.2015.12.026
  • Aoude, H., Belghiti, M., Cook, W. D., & Mitchell, D. (2012). Response of steel fiber-reinforced concrete beams with and without stirrups. ACI Structural Journal, 109, 359–367.
  • Arslan, G. (2014). Shear strength of steel fiber reinforced concrete (SFRC) slender beams. KSCE Journal of Civil Engineering, 18, 587–594.10.1007/s12205-014-0320-x
  • Arslan, G., Keskin, R. S. O., & Ozturk, M. (2017). Shear behaviour of polypropylene fibre-reinforced-concrete beams without stirrups. Structures and Buildings, 170, 190–198.
  • Arslan, M. E. (2016). Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Construction and Building Materials, 114, 383–391.10.1016/j.conbuildmat.2016.03.176
  • Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behavior of high-strength fiber reinforced concrete beams. ACI Structural Journal, 89, 176–184.
  • ASTM C494 / C494M-16 (2016). Standard specification for chemical admixtures for concrete. West Conshohocken, PA: ASTM International.
  • Batson, G., Jenkins, E., & Spatney, R. (1972). Steel fibers as shear reinforcement in beams. ACI Journal Proceedings, 69, 640–644.
  • Biolzi, L., & Cattaneo, S. (2017). Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cement and Concrete Composites, 77, 1–13.10.1016/j.cemconcomp.2016.12.002
  • Blanco, A., Pujadas, P., De la Fuente, A., Cavalaro, S. H. P., & Aguado, A. (2016). Influence of the type of fiber on the structural response and design of FRC slabs. ASCE Journal of Structural Engineering, 142. 04016054.
  • Carnovale, D., & Vecchio, F. J. (2014). Effect of fiber material and loading history on shear behavior of fiber-reinforced concrete. ACI Structural Journal, 111, 1235–1244.
  • Conforti, A., & Minelli, F. (2016). Compression field modelling of fibre reinforced concrete shear critical deep beams: A numerical study. Materials and Structures, 49, 3369–3383.10.1617/s11527-015-0725-0
  • Conforti, A., Minelli, F., Tinini, A., & Plizzari, G. A. (2015). Influence of polypropylene fibre reinforcement and width-to-effective depth ratio in wide-shallow beams. Engineering Structures, 88, 12–21.10.1016/j.engstruct.2015.01.037
  • Conforti, A., Tiberti, G., & Plizzari, G. A. (2015). Combined effect of high concentrated loads exerted by TBM hydraulic jacks. Magazine of Concrete Research, 68, 1122–1132.
  • Conforti, A., Tiberti, G., Plizzari, G. A., Caratelli, A., & Meda, A. (2017). Precast tunnel segments reinforced by macro-synthetic fibers. Tunnelling and Underground Space Technology, 63, 1–11.10.1016/j.tust.2016.12.005
  • Cucchiara, C., La Mendola, L., & Papia, M. (2004). Effectiveness of stirrups and steel fibres as shear reinforcement. Cement and Concrete Composites, 26, 777–786.10.1016/j.cemconcomp.2003.07.001
  • Cuenca, E., & Serna, P. (2013). Shear behavior of prestressed precast beams made of self-compacting fiber reinforced concrete. Construction and Building Materials, 45, 145–156.10.1016/j.conbuildmat.2013.03.096
  • Cuenca, E., Echegaray-Oviedo, J., & Serna, P. (2015). Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams. Composites Part B: Engineering, 75, 135–147.10.1016/j.compositesb.2015.01.037
  • Cunha, V. M. C. F., Barros, J. A. O., & Sena-Cruz, J. M. (2012). A finite element model with discrete embedded elements for fibre reinforced composites. Computers & Structures, 94–95, 22–33.10.1016/j.compstruc.2011.12.005
  • Ding, Y., You, Z., & Jalali, S. (2011). The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete. Engineering Structures, 33, 107–117.10.1016/j.engstruct.2010.09.023
  • Dinh, H. H., Parra-Montesinos, G. J., & Wight, J. K. (2010). Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement. ACI Structural Journal, 107, 597–606.
  • Dinh, H. H., Parra-Montesinos, G. J., & Wight, J. K. (2011). Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement. Journal of Structural Engineering, 137, 1039–1051.10.1061/(ASCE)ST.1943-541X.0000362
  • Dupont, D., & Vandewalle, L. (2003). Shear capacity of concrete beams containing longitudinal reinforcement and steel fibers (SP 216-06). Farmington Hills, MI, USA: American Concrete Institute.
  • European Committee for Standardization (2004). Eurocode 2: Design of Concrete Structures – Part 1-1: General rules and rules for buildings, Brussels.
  • Gandomi, A. H., Alavi, A. H., & Yun, G. J. (2011). Nonlinear modeling of shear strength of SFRC beams using linear genetic programming. Structural Engineering and Mechanics, 38, 1–25.10.12989/sem.2011.38.1.001
  • Imam, M., Vandewalle, L., & Mortelmans, F. (1994). Shear capacity of steel fiber high-strength concrete beams. Proceedings of the ACI International Conference on High Performance Concrete (SP-149), Singapore.
  • International Federation for Structural Concrete (fib). (2012). CEB-FIP Model Code 2010, final draft, Bulletins 65 and 66. Lausanne.
  • Jain, K., & Singh, B. (2014). Investigation of steel fibres as minimum shear reinforcement. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 167, 285–299.10.1680/stbu.12.00071
  • Keskin, R. S. O. (2017). Predicting shear strength of SFRC slender beams without stirrups using an ANN model. Structural Engineering and Mechanics, 61, 605–615.10.12989/sem.2017.61.5.605
  • Khan, M., & Ali, M. (2016). Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Construction and Building Materials, 125, 800–808.10.1016/j.conbuildmat.2016.08.111
  • Khuntia, M., Stojadinovic, B., & Goel, S. C. (1999). Shear strength of normal and high-strength fiber reinforced concrete beams without stirrups. ACI Structural Journal, 96, 282–289.
  • Kizilkanat, A. B., Kabay, N., Akyüncü, V., Chowdhury, S., & Akça, A. H. (2016). Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Construction and Building Materials, 100, 218–224.
  • Korucu, H. (2016). Polypropylene fiber reinforced concrete plates under fluid impact. Part I: Experiments. Structural Engineering and Mechanics, 60, 211–223.10.12989/sem.2016.60.2.211
  • Kwak, Y.-K., Eberhard, M. O., Kim, W.-S., & Kim, J. (2002). Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 99, 530–538.
  • Li, V. C., Ward, R., & Hamza, A. M. (1992). Steel and synthetic fibers as shear reinforcement. ACI Materials Journal, 89, 499–508.
  • Lim, T. Y., Paramasivam, P., & Lee, S. L. (1987). Shear and moment capacity of reinforced steel-fiber-concrete beams. Magazine of Concrete Research, 39, 148–160.10.1680/macr.1987.39.140.148
  • Majdzadeh, F., Soleimani, S. M., & Banthia, N. (2006). Shear strength of reinforced concrete beams with a fiber concrete matrix. Canadian Journal of Civil Engineering, 33, 726–734.10.1139/l05-118
  • Mansur, M. A., Ong, K. C. G., & Paramasivam, P. (1986). Shear strength of fibrous concrete beams without stirrups. ASCE Journal of Structural Engineering, 112, 2066–2079.10.1061/(ASCE)0733-9445(1986)112:9(2066)
  • Minelli, F., Plizzari, G. A., & Vecchio, F. J. (2007). Proceedings of Framcos-6, Catania, Italy: Influence of steel fibers on full-scale RC beams under shear loading (Vol. 3, pp. 1523–1531). London: Taylor & Francis.
  • Minelli, F., & Plizzari, G. A. (2013). On the effectiveness of steel fibers as shear reinforcement. ACI Structural Journal, 110, 379–390.
  • Minelli, F., Conforti, A., Cuenca, E., & Plizzari, G. A. (2014). Are steel fibres able to mitigate or eliminate size effect in shear? Materials and Structures, 47, 459–473.10.1617/s11527-013-0072-y
  • Mphonde, A. G. (1989). Use of stirrup effectiveness in shear design of concrete beams. ACI Structural Journal, 86, 541–545.
  • Naik, U., & Kute, S. (2013). Span-to-depth ratio effect on shear strength of steel fiber-reinforced high-strength concrete deep beams using ANN model. International Journal of Advanced Structural Engineering, 5, 29.10.1186/2008-6695-5-29
  • Narayanan, R., & Darwish, I. Y. S. (1987). Use of steel fibers as shear reinforcement. ACI Structural Journal, 84, 216–227.
  • Noghabai, K. (2000). Beams of fibrous concrete in shear and bending: Experiment and model. ASCE Journal of Structural Engineering, 126, 243–251.10.1061/(ASCE)0733-9445(2000)126:2(243)
  • Parra-Montesinos, G. J., Wight, J. K., Dinh, H. H., Libbrecht, A., & Padilla, C. (2006). Shear strength of fiber reinforced concrete beams without stirrups ( Report No. UMCEE 06-04). University of Michigan, Ann Arbor, MI, USA.
  • Pujadas, P., Blanco, A., Cavalaro, S., & Aguado, A. (2014). Plastic fibres as the only reinforcement for flat suspended slabs: Experimental investigation and numerical simulation. Construction and Building Materials, 57, 92–104.10.1016/j.conbuildmat.2014.01.082
  • Sahoo, D. R., & Sharma, A. (2014). Effect of steel fiber content on behavior of concrete beams with and without stirrups. ACI Structural Journal, 111, 1157–1166.
  • Sahoo, D. R., Maran, K., & Kumar, A. (2015). Effect of steel and synthetic fibers on shear strength of RC beams without shear stirrups. Construction and Building Materials, 83, 150–158.10.1016/j.conbuildmat.2015.03.010
  • Sahoo, D. R., Bhagat, S., & Reddy, T. C. V. (2016). Experimental investigation of shear-span to effective-depth ratio for steel fiber reinforced concrete T-beams. Materials and Structures, 49, 3815–3830.10.1617/s11527-015-0756-6
  • Sharma, A. K. (1986). Influence of steel fibers on the shear resistance of lightweight concrete I-beams. ACI Journal Proceedings, 83, 624–628.
  • Shoaib, A., Lubell, A. S., & Bindiganavile, V. S. (2014). Size effect in shear for steel fiber-reinforced concrete members without stirrups. ACI Structural Journal, 111, 1081–1090.
  • Spinella, N., Colajanni, P., & La Mendola, L. (2012). Nonlinear analysis of beams reinforced in shear with stirrups and steel Fibers. ACI Structural Journal, 109, 53–64.
  • Swamy, R. N., Jones, R., & Chiam, A. T. P. (1993). Influence of steel fibers on the shear resistance of lightweight concrete I-beams. ACI Structural Journal, 90, 103–114.
  • Tiberti, G., Conforti, A., & Plizzari, G. A. (2015). Precast segments under TBM hydraulic jacks: Experimental investigation on the local splitting behavior. Tunnelling and Underground Space Technology, 50, 438–450.10.1016/j.tust.2015.08.013
  • Yakoub, H. E. (2011). Shear stress prediction: Steel fiber-reinforced concrete beams without stirrups. ACI Structural Journal, 108, 304–314.
  • Yazdanbakhsh, A., Altoubat, S., & Rieder, K. A. (2015). Analytical study on shear strength of macro synthetic fiber reinforced concrete beams. Engineering Structures, 100, 622–632.10.1016/j.engstruct.2015.06.034
  • Zhao, Q., Yu, J., Geng, G., Jiang, J., & Liu, X. (2016). Effect of fiber types on creep behavior of concrete. Construction and Building Materials, 105, 416–422.10.1016/j.conbuildmat.2015.12.149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.