290
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study for determining applicable models of compressive stress–strain behavior of hybrid synthetic fiber-reinforced high-strength concrete

&
Pages 34-59 | Received 27 Oct 2016, Accepted 29 Jul 2017, Published online: 24 Aug 2017

References

  • ACI Committee 211. (2008). Guide for selecting proportions for high-strength concrete using portland cement and other cementitious materials. ACI 211.4R-08. Farmington Hills (MI): American Concrete Institute.
  • Afroughsabet, V., & Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82.10.1016/j.conbuildmat.2015.06.051
  • Altoubat, S., Yazdanbakhsh, A., & Rieder, K. A. (2009). Shear behavior of macro-synthetic fiber-reinforced concrete beams without stirrups. ACI Materials Journal, 164, 381–389.
  • ASTM C39/C39 M. (2014). Standard test method for compressive strength of cylindrical concrete specimens. Annual Book of ASTM Standards.
  • Barros, J. A. O., & Figueiras, J. A. (1999). Flexural behavior of SFRC: Testing and modeling. Journal of Materials in Civil Engineering, 11, 331–339.10.1061/(ASCE)0899-1561(1999)11:4(331)
  • Bencardino, F., Rizzuti, L., Spadea, G., & Swamy, R. N. (2008). Stress–strain behavior of steel fiber-reinforced concrete in compression. Journal of Materials in Civil Engineering, 20, 255–263.10.1061/(ASCE)0899-1561(2008)20:3(255)
  • Caggiano, A., Gambarelli, S., Martinelli, E., Nisticò, N., & Pepe, M. (2016). Experimental characterization of the post-cracking response in Hybrid Steel/Polypropylene Fiber-Reinforced Concrete. Construction and Building Materials, 125, 1035–1043.10.1016/j.conbuildmat.2016.08.068
  • Campione, G., & Mangiavillano, M. L. (2008). Fibrous reinforced concrete beams in flexure: Experimental investigation, analytical modelling and design considerations. Engineering Structures, 30, 2970–2980.10.1016/j.engstruct.2008.04.019
  • Carreira, D. J., & Chu, K. M. (1985). Stress–strain relationship for plain concrete in compression. ACI Journal, 82, 797–804.
  • Chen, G. M., He, Y. H., Yang, H., Chen, J. F., & Guo, Y. C. (2014). Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures. Construction and Building Materials, 71, 1–15.10.1016/j.conbuildmat.2014.08.012
  • Conforti, A., & Minelli, F. (2016). Compression field modelling of fibre reinforced concrete shear critical deep beams: A numerical study. Materials and Structures, 49, 3369–3383.10.1617/s11527-015-0725-0
  • Conforti, A., Tiberti, G., Plizzari, G. A., Caratelli, A., & Meda, A. (2017). Precast tunnel segments reinforced by macro-synthetic fibers. Tunnelling and Underground Space Technology, 63, 1–11.10.1016/j.tust.2016.12.005
  • Conforti, A., Tinini, A., Minelli, F., Plizzari, G., & Moro, S. (2017). Structural applicability of polypropylene fibres: Deep and wide-shallow beams subjected to shear. Special Publication, 310, 171–180.
  • Ezeldin, A. S., & Balaguru, P. N. (1992). Normal‐ and high‐strength fiber‐reinforced concrete under compression. Journal of Materials in Civil Engineering, 4, 415–429.10.1061/(ASCE)0899-1561(1992)4:4(415)
  • Fanella, D. A., & Naaman, A. E. (1985). Stress–strain properties of fiber reinforced mortar in compression. ACI Journal, 82, 475–475.
  • FIB. (2010). Model code. First complete draft, Bulletin 55, vol. 1.
  • Guo, Z., & Zhang, X. (1987). Investigation of complete stress-deformation curves for concrete in tension. ACI Materials Journal, 84, 278–285.
  • Haddadou, N., Chaid, R., & Ghernouti, Y. (2015). Experimental study on steel fibre reinforced self-compacting concrete incorporating high volume of marble powder. European Journal of Environmental and Civil Engineering, 19, 48–64.10.1080/19648189.2014.929537
  • Hasan-Nattaj, F., & Nematzadeh, M. (2017). The effect of forta–ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica. Construction and Building Materials, 137, 557–572.10.1016/j.conbuildmat.2017.01.078
  • Hognestad, E. (1951). A study of combined bending and axial load in reinforced concrete members. Bulletin Series (Vol. 399). Champaign, IL: University of Illinois Engineering Experimental Station.
  • Hsu, L. S., & Hsu, C. T. T. (1994). Stress–strain behavior of steel-fiber high-strength concrete under compression. ACI Structural Journal, 91, 448–457.
  • Mansur, M. A., Chin, M. S., & Wee, T. H. (1999). Stress–strain relationship of high-strength fiber concrete in compression. Journal of Materials in Civil Engineering, 11, 21–29.10.1061/(ASCE)0899-1561(1999)11:1(21)
  • Nataraja, M. C., Dhang, N., & Gupta, A. P. (1999). Stress–strain curves for steel-fiber reinforced concrete under compression. Cement and Concrete Composites, 21, 383–390.10.1016/S0958-9465(99)00021-9
  • Nematzadeh, M., Salari, A., Ghadami, J., & Naghipour, M. (2016). Stress–strain behavior of freshly compressed concrete under axial compression with a practical equation. Construction and Building Materials, 115, 402–423.10.1016/j.conbuildmat.2016.04.045
  • Nili, M., & Afroughsabet, V. (2010). Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. International Journal of Impact Engineering, 37, 879–886.10.1016/j.ijimpeng.2010.03.004
  • Phillips, D. V., & Binsheng, Z (1993). Direct tension tests on notched and unnotched plain concrete specimens. Magazine of Concrete Research, 45, 25–35.10.1680/macr.1993.45.162.25
  • Popovics, S. (1973). A numerical approach to the complete stress–strain curve of concrete. Cement and Concrete Research, 3, 583–599.10.1016/0008-8846(73)90096-3
  • Pujadas, P., Blanco, A., Cavalaro, S., & Aguado, A. (2014). Plastic fibres as the only reinforcement for flat suspended slabs: Experimental investigation and numerical simulation. Construction and Building Materials, 57, 92–104.10.1016/j.conbuildmat.2014.01.082
  • Pujadas, P., Blanco, A., Cavalaro, S., de la Fuente, A., & Aguado, A. (2014). Fibre distribution in macro-plastic fibre reinforced concrete slab-panels. Construction and Building Materials, 64, 496–503.10.1016/j.conbuildmat.2014.04.067
  • Rabehi, B., Ghernouti, Y., & Boumchedda, K. (2013). Strength and compressive behaviour of ultra high-performance fibre-reinforced concrete (UHPFRC) incorporating Algerian calcined clays as pozzolanic materials and silica fume. European Journal of Environmental and Civil Engineering, 17, 599–615.10.1080/19648189.2013.802998
  • Sargin, M., Ghosh, S. K., & Handa, V. K. (1971). Effects of lateral reinforcement upon the strength and deformation properties of concrete. Magazine of Concrete Research, 23, 99–110.10.1680/macr.1971.23.76.99
  • Shannag, M. J. (2000). High strength concrete containing natural pozzolan and silica fume. Cement and Concrete Composite, 22, 399–406.10.1016/S0958-9465(00)00037-8
  • Sharbaf, M. R, & Hejazi, S. M. (2012). An investigative study on the effects of nano-SiO2 on compressive strength and permeability of concrete. International Conference on Advanced Computer Theory and Engineering, 5th (ICACTE), ASME Press, Cape Town.
  • Someh, A. K., & Saeki, N. (1994). Prediction for the stress–strain curve of steel fiber reinforced concrete. Japan Concrete Institute, 18, 1149–1154.
  • Soroushian, P, & Lee, C. D. (1989). Constitutive modeling of steel fiber reinforced concrete under direct tension and compression. In R. N. Swamy, & B. Barr (Eds.), Fibre reinforced cements and concretes, recent developments (pp. 363–375). London: Elsevier Applied Science.
  • Taerwe, L. R. (1991). Influence of steel fibers on strain-softening of high-strength concrete. ACI Materials Journal, 88, 54–60.
  • Wang, P. T., Shah, S. P., & Naaman, A. E. (1978). Stress–strain curves of normal and light weight concrete in compression. ACI Journal, 75, 603–611.
  • Xie, J. H., Guo, Y. C., Liu, L. S., & Xie, Z. H. (2015). Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber. Construction and Building Materials, 79, 263–272.10.1016/j.conbuildmat.2015.01.036
  • Xie, N., & Liu, W. (1989). Determining tensile properties of mass concrete by direct tensile test. ACI Materials Journal, 86, 214–219.
  • Yazici, H. (2007). The effect of curing conditions on compressive strength of ultra-high strength concrete with high volume mineral admixtures. Building and Environment, 42, 2083–2089.10.1016/j.buildenv.2006.03.013
  • Zhou, Y., Liu, X., Xing, F., Cui, H., & Sui, L. (2016). Axial compressive behavior of FRP-confined lightweight aggregate concrete: An experimental study and stress–strain relation model. Construction and Building Materials, 119, 1–15.10.1016/j.conbuildmat.2016.02.180

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.