353
Views
2
CrossRef citations to date
0
Altmetric
Articles

Failure behaviour of rock-like materials containing two pre-existing unparallel flaws: an insight from particle flow modeling

&
Pages s57-s78 | Received 22 May 2017, Accepted 08 Aug 2017, Published online: 23 Aug 2017

References

  • Bobet, A., & Einstein, H. H. (1998). Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics and Mining Sciences, 35, 863–888.10.1016/S0148-9062(98)00005-9
  • Bobet, A. (2000). The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 66, 187–219.10.1016/S0013-7944(00)00009-6
  • Cai, M., & Kaiser, P. K. (2004). Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks. International Journal of Rock Mechanics and Mining Sciences, 41, 478–483.10.1016/j.ijrmms.2004.03.086
  • Cao, P., Liu, T. Y., Pu, C. Z., et al. (2015). Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Engineering Geology, 187, 113–121.10.1016/j.enggeo.2014.12.010
  • Cao, R., Cao, P., Lin, H., et al. (2016). Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: experimental studies and particle mechanics approach. Rock Mechanics and Rock Engineering, 49, 763–783.10.1007/s00603-015-0779-x
  • Cho, N., Martin, C. D., & Sego, D. C. (2007). A clumped particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 44, 997–1010.10.1016/j.ijrmms.2007.02.002
  • Debecker, B., & Vervoort, A. (2013). Two-dimensional discrete element simulations of the fracture behaviour of slate. International Journal of Rock Mechanics and Mining Sciences, 61, 161–170.10.1016/j.ijrmms.2013.02.004
  • Erarslan, N., & Williams, D. J. (2013). Mixed-mode fracturing of rocks under static and cyclic loading. Rock Mechanics & Rock Engineering, 46, 1035–1052.10.1007/s00603-012-0303-5
  • Fan, X., Kulatilake, P., & Chen, X. (2015). Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach. Engineering Geology, 190, 17–32.10.1016/j.enggeo.2015.02.008
  • Fujii, Y., & Ishijima, Y. (2004). Consideration of fracture growth from an inclined slit and inclined initial fracture at the surface of rock and mortar in compression. International Journal of Rock Mechanics and Mining Sciences, 41, 1035–1041.10.1016/j.ijrmms.2004.04.001
  • Ghazvinian, A., Sarfarazi, V., Schubert, W., & Blumel, M. (2012). A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock mechanics and rock engineering, 45, 677–693.
  • Huang, D., Gu, D., Yang, C., Huang, R., & Fu, G. (2016a). Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression. Rock Mechanics and Rock Engineering, 49, 375–399.10.1007/s00603-015-0757-3
  • Huang, Y. H., Yang, S. Q., Tian, W. L., Zeng, W., & Yu, L. Y. (2016b). An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression. Acta Mechanica Sinica, 32, 442–455.10.1007/s10409-015-0489-3
  • Lee, H., & Jeon, S. (2011). An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. International Journal of Solids and Structures, 48, 979–999.10.1016/j.ijsolstr.2010.12.001
  • Lei, Q., Latham, J. P., & Tsang, C. F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85, 151–176.10.1016/j.compgeo.2016.12.024
  • Lei, Q., Latham, J. P., Xiang, J., Tsang, C. F., Lang, P., & Guo, L. (2014). Effects of geomechanical changes on the validity of a discrete fracture network representation of a realistic two-dimensional fractured rock. International Journal of Rock Mechanics and Mining Sciences, 70, 507–523.10.1016/j.ijrmms.2014.06.001
  • Lei, Q., Latham, J. P., & Xiang, J. (2016). Implementation of an empirical joint constitutive model into finite-discrete element analysis of the geomechanical behaviour of fractured rocks. Rock Mechanics and Rock Engineering, 49, 4799–4816.10.1007/s00603-016-1064-3
  • Li, M. T., Feng, X. T., & Zhou, H. (2004). Cellular automata simulation of the interaction mechanism of two cracks in rock under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 41, 484–489.10.1016/j.ijrmms.2004.03.087
  • Li, Y. P., Chen, L. Z., & Wang, Y. H. (2005). Experimental research on pre-cracked marble under compression. International Journal of Solids and Structures, 42, 2505–2516.10.1016/j.ijsolstr.2004.09.033
  • Lin, P., Wong, R. H. C., Chau, K. T., & Tang, C. A. (2000). Multi-crack coalesence in rock-like material under uniaxial and biaxial loading Key engineering materials. Trans Tech Publications, 183, 809–814.
  • Manouchehrian, A., Sharifzadeh, M., Marji, M. F., & Gholamnejad, J. (2014). A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression. Archives of Civil and Mechanical Engineering, 14, 40–52.10.1016/j.acme.2013.05.008
  • Marji, M. F., Manouchehrian, A., & Fatehi, Marji M. (2012). Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression. Acta Mechanica Sinica, 28, 1389–1397.
  • Morgan, S. P., Johnson, C. A., & Einstein, H. H. (2013). Cracking processes in Barre granite: Fracture process zones and crack coalescence. International Journal of Fracture, 180, 177–204.10.1007/s10704-013-9810-y
  • Nguyen, T. L., Hall, S. A., Vacher, P., & Viggiani, G. (2011). Fracture mechanisms in soft rock: Identification and quantification of evolving displacement discontinuities by extended digital image correlation. Tectonophysics, 503, 117–128.10.1016/j.tecto.2010.09.024
  • Ning, Y., Yang, J., An, X., & Ma, G. (2011). Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework. Computers & Geotechnics, 38, 40–49.10.1016/j.compgeo.2010.09.003
  • Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 41, 1329–1364.10.1016/j.ijrmms.2004.09.011
  • Prudencio, M., & Jan, M. V. S. (2007). Strength and failure modes of rock mass models with non-persistent joints. International Journal of Rock Mechanics & Mining Sciences, 44, 890–902.10.1016/j.ijrmms.2007.01.005
  • Pu, C. Z., & Cao, P. (2012). Failure characteristics and its influencing factors of rock-like material with multi-flaws under uniaxial compression. Transactions of Nonferrous Metals Society of China, 22, 185–191.10.1016/S1003-6326(11)61159-X
  • Sagong, M., & Bobet, A. (2002). Coalescence of multiple flaws in a rock-model material in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 39, 229–241.10.1016/S1365-1609(02)00027-8
  • Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M., & Nejati, H. R. (2014). Numerical simulation of the process of fracture of echelon rock joints. Rock Mechanics and Rock Engineering, 47, 1355–1371.10.1007/s00603-013-0450-3
  • Tang, C. A., Lin, P., Wong, R. H. C., & Lin, P. (2001). Analysis of crack coalescence in rock-like materials containing three flaws – Part II: numerical approach. International Journal of Rock Mechanics and Mining Sciences, 38, 925–939.10.1016/S1365-1609(01)00065-X
  • Wong, L. N. Y., & Einstein, H. H. (2009a). Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation. Rock Mechanics and Rock Engineering, 42, 475–511.10.1007/s00603-008-0002-4
  • Wong, L. N. Y., & Einstein, H. H. (2009b). Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 46, 239–249.10.1016/j.ijrmms.2008.03.006
  • Wong, L. N. Y., & Li, H. Q. (2013). Numerical study on coalescence of two pre-existing coplanar flaws in rock. International Journal of Solids & Structures, 50, 3685–3706.10.1016/j.ijsolstr.2013.07.010
  • Wong, R. H. C., & Chau, K. T. (1998). Crack coalescence in a rock-like material containing two cracks. International Journal of Rock Mechanics & Mining Sciences, 35, 147–164.10.1016/S0148-9062(97)00303-3
  • Wong, R. H. C., Guo, Y. S. H., Li, L. Y., Chau, K. T., Zhu, W. S., & Li, S. C. (2006a). Anti-wing crack growth from surface flaw in real rock under uniaxial compression. Proceedings of the 16th European conference on fracture, Alexandroupolis, Greece, 825–826.
  • Wong, R. H. C., Lin, P., & Tang, C. A. (2006b). Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression. Mechanics of Materials, 38, 142–159.10.1016/j.mechmat.2005.05.017
  • Yang, S. Q., Huang, Y. H., Jing, H. W., & Liu, X. R. (2014). Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Engineering Geology, 178, 28–48.10.1016/j.enggeo.2014.06.005
  • Wu, Z., & Wong, L. N. Y. (2013). Elastic–plastic cracking analysis for brittle–ductile rocks using manifold method. International Journal of Fracture, 180, 71–91.10.1007/s10704-012-9802-3
  • Yang, S. Q., & Huang, Y. H. (2014). Particle flow study on strength and meso-mechanism of Brazilian splitting test for jointed rock mass. Acta Mechanica Sinica, 30, 547–558.10.1007/s10409-014-0076-z
  • Yang, S. Q., Huang, Y. H., Tian, W. L., & Zhu, J. B. (2017). An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaixal compression. Engineering Geology, 217, 35–48.
  • Yang, S. Q., Jiang, Y. Z., Xu, W. Y., & Chen, X. Q. (2008). Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression. International Journal of Solids and Structures, 45, 4796–4819.10.1016/j.ijsolstr.2008.04.023
  • Yang, S. Q., & Jing, H. W. (2011). Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. International Journal of Fracture, 168, 227–250.10.1007/s10704-010-9576-4
  • Yin, P., Wong, R. H. C., & Chau, K. T. (2014). Coalescence of two parallel pre-existing surface cracks in granite. International Journal of Rock Mechanics and Mining Sciences, 68, 66–84.10.1016/j.ijrmms.2014.02.011
  • Zhang, X. P., & Wong, L. N. Y. (2013). Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mechanics and Rock Engineering, 46, 1001–1021.10.1007/s00603-012-0323-1
  • Zhang, X. P., & Wong, L. N. Y. (2012). Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach. Rock Mechanics and Rock Engineering, 45, 711–737.
  • Zhou, X. P., Bi, J., & Qian, Q. H. (2015). Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws. Rock Mechanics and Rock Engineering, 48, 1097–1114.10.1007/s00603-014-0627-4
  • Zhou, X. P., Cheng, H., & Feng, Y. F. (2014). An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression. Rock Mechanics and Rock Engineering, 47, 1961–1986.10.1007/s00603-013-0511-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.