476
Views
2
CrossRef citations to date
0
Altmetric
Articles

Influence of temperature on the brittle failure of granite in deep tunnels determined from triaxial unloading tests

ORCID Icon, , , &
Pages s269-s285 | Received 18 May 2017, Accepted 08 Aug 2017, Published online: 30 Aug 2017

References

  • Andersson, J. C., & Martin, C. D. (2009). The Aspo pillar stability experiment: Part I-experiment design. International Journal of Rock Mechanics and Mining Sciences, 46, 865–878. doi:10.1016/j.ijrmms.2009.02.010
  • Andersson, J., Christer, M. C., & Derek, S. H. (2009). The Aspo pillar stability experiment: Part II-rock mass response to coupled excavation-induced and thermal-induced stresses. International Journal of Rock Mechanics and Mining Sciences, 46, 879–895. doi:10.1016/j.ijrmms.2009.03.002
  • Brady, B. T., & Leighton, F. W. (1977). Seismicity anomaly prior to a moderate rock burst – Case-study. International Journal of Rock Mechanics and Mining Sciences, 14, 127–132. doi:10.1016/0148-9062(77)90003-1
  • Cantisani, E., Pecchioni, E., & Fratini, F. (2009). Thermal stress in the Apuan marbles: Relationship between microstructure and petrophysical characteristics. International Journal of Rock Mechanics and Mining Sciences, 46, 128–137. doi:10.1016/j.ijrmms.2008.06.005
  • Chen, G., Li, T., Zhang, G., Yin, H., & Zhang, H. (2014). Temperature effect of rock burst for hard rock in deep-buried tunnel. Natural Hazards, 72, 915–926. doi:10.1007/s11069-014-1042-6
  • Dou, L. M., Lu, C. P., & Mu, Z. L. (2009). Prevention and forecasting of rock burst hazards in coal mines. Mining Science and Technology, 19, 585–591. doi:10.1016/S1674-5364(09)60109-5
  • Dwivedi, R. D., Goel, R. K., Prasad, V. V. R., & Sinha, A. (2008). Thermo-mechanical properties of Indian and other granites. International Journal of Rock Mechanics and Mining Sciences, 45, 303–315. doi:10.1016/j.ijrmms.2007.05.008
  • Edelbro, C. (2009). Numerical modeling of observed fallouts in hard rock masses using an instantaneous cohesion-softening friction-hardening model. Tunneling and Underground Space Technology, 24, 398–409. doi:10.1016/j.tust.2008.11.004
  • Faoro, I., Vinciguerra, S., Marone, C., Elsworth, D., & Schubnel, A. (2013). Linking permeability to crack density evolution in thermally stressed rocks under cyclic loading. Geophysics Research Letter, 40, 2590–2595. doi:10.1002/grl.50436
  • Feng, X. T., Pan, P. Z., & Zhou, H. (2006). Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. International Journal of Rock Mechanics and Mining Sciences, 43, 1091–1108. doi:10.1016/j.ijrmms.2006.02.006
  • Ferrero, A. M., & Marini, P. (2001). Experimental studies on the mechanical behaviour of two thermal cracked marbles. Rock Mechanics and Rock Engineering, 34, 57–66. doi:10.1007/s006030170026
  • Geraud, Y., Mazerolle, F., Raynaud, S., & Lebon, P. (1998). Crack location in granitic samples submitted to heating, low confining pressure and axial loading. Geophysical Journal International, 133, 553–567. doi: 10.1046/j.1365-246X.1998.00471.x
  • Hajiabdolmajid, V., Kaiser, P. K., & Martin, C. D. (2002). Modeling brittle failure of rock. International Journal of Rock Mechanics and Mining Sciences, 39, 731–741. doi:10.1016/S1365-1609(02)00051-5
  • He, M. C., Miao, J. L., & Feng, J. L. (2010). Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions. International Journal of Rock Mechanics and Mining Sciences, 47, 286–298. doi:10.1016/j.ijrmms.2009.09.003
  • Hettema, M. H. H., Wolf, K. H. A. A., & De, P. C. J. (1998). The influence of steam pressure on thermal spalling of sedimentary rock: Theory and experiments. International Journal of Rock Mechanics and Mining Sciences, 35, 3–15. doi:10.1016/S0148-9062(97)00318-5
  • Hirata, A., Kameoka, Y., & Hirano, T. (2007). Safety management based on detection of possible rock burst by AE monitoring during tunnel excavation. Rock Mechanics and Rock Engineering, 40, 563–576. doi:10.1007/s00603-006-0122-7
  • Homand-Etienne, F., & Houpert, R. (1989). Thermally induced microcracking in granites: Characterization and analysis. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26, 125–134. doi:10.1016/0148-9062(89)90001-6
  • Hua, A. Z., & You, M. Q. (2001). Rock failure due to energy release during unloading and application to underground rock burst control. Tunnelling and Underground Space Technology, 16, 241–246. doi:10.1016/S0886-7798(01)00046-3
  • Hudson, J. A., Stephansson, O., Andersson, J., Tsang, C. F., & Jing, L. (2001). Coupled T–H–M issues relating to radioactive waste repository design and performance. International Journal of Rock Mechanics and Mining Sciences, 38, 143–161. doi:10.1016/S1365-1609(00)00070-8
  • Hueckel, T., Peano, A., & Pellegrini, R. (1994). A thermo-plastic constitutive law for brittle-plastic behavior of rocks at high-temperatures. Pure and Applied Geophysics, 143, 483–511. doi:10.1007/BF00874339
  • Jiang, Q., Feng, X. T., Xiang, T. B., & Su, G. S. (2010). Rock burst characteristics and numerical simulation based on a new energy index: A case study of a tunnel at 2,500 m depth. Bulletin of Engineering Geology and the Environment, 69, 381–388. doi:10.1007/s10064-010-0275-1
  • Jiang, Q., Feng, X. T., Chen, J., & Huang, K. (2013). Estimating in-situ rock stress from spalling veins: A case study. Engineering Geology, 152, 38–47. doi:10.1016/j.enggeo.2012.10.010
  • Lan, H. X., Martin, C. D., & Andersson, J. C. (2013). Evolution of in situ rock mass damage induced by mechanical-thermal loading. Rock Mechanics and Rock Engineering, 46, 153–168. doi:10.1007/s00603-012-0248-8
  • Lee, K. H., Lee, I. M., & Shin, Y. J. (2012). Brittle rock property and damage index assessment for predicting brittle failure in excavations. Rock Mechanics and Rock Engineering, 45, 251–257. doi:10.1007/s00603-011-0189-7
  • Lei, X., Masuda, K., Nishizawa, O., Jouniaux, L., Liu, L., & Ma, W. (2004). Detailed analysis of acoustic emission activity during catastrophic fracture of faults in rock. Journal of Structural Geology, 26, 247–258. doi:10.1016/S0191-8141(03)00095-6
  • Li, S. J., Feng, X. T., & Li, Z. H. (2012). In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station. Engineering Geology, 137, 85–96. doi:10.1016/j.enggeo.2012.03.010
  • Lokajíček, T., Rudajev, V., Dwivedi, R. D., Goel, R. K., & Swarup, A. (2012). Influence of thermal heating on elastic wave velocities in granulite. International Journal of Rock Mechanics and Mining Sciences, 54, 1–8. doi:10.1016/j.ijrmms.2012.05.012
  • Min, K. B., Lee, J., & Stephansson, O. (2013). Implications of thermally-induced fracture slip and permeability change on the long-term performance of a deep geological repository. International Journal of Rock Mechanics and Mining Sciences, 61, 275–288. doi:10.1016/j.ijrmms.2013.03.009
  • Pan, P. Z., Feng, X. T., Huang, X. H., Cui, Q., & Zhou, H. (2009). Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automatone. Environmental Geology, 57, 1299–1311. doi:10.1007/s00254-008-1463-1
  • Rinne, M., Shen, B. T., & Backers, T. (2013). Modelling fracture propagation and failure in a rock pillar under mechanical and thermal loadings. Journal of Rock Mechanics and Geotechnical Engineering, 5, 73–83. doi:10.1016/j.jrmge.2012.10.001
  • Shen, B., Kim, H. M., Park, E. S., Kim, T. K., Wuttke, M. W., & Rinne, M. (2013). Multi-region boundary element analysis for coupled thermal-fracturing processes in geomaterials. Rock Mechanics and Rock Engineering, 46, 135–151. doi:10.1007/s00603-012-0243-0
  • Singh, S. P. (1987). The influence of rock properties on occurrence and control of rockburst. Mining Science and Technology, 5, 11–18. doi:10.1016/S0167-9031(87)90854-1
  • Sygala, A., Bukowska, M., & Janoszek, T. (2013). High temperature versus geomechanical parameters of slected rocks– the present state of research. Journal of Sustainable Mining, 12, 45–51. doi:10.7424/jsm130407
  • Takarli, M., & Prince, W. (2008). Temperature effects on physical properties and mechanical behavior of granite: Experimental investigation of material damage. Journal of ASTM International, 5, 1–13. doi:10.1520/JAI100464
  • Tarasov, B., & Potvin, Y. (2013). Universal criteria for rock brittleness estimation under triaxial compression. International Journal of Rock Mechanics & Mining Sciences, 59, 57–69. doi:10.1016/j.ijrmms.2012.12.011
  • Thompson, T. W., & Potts, E. (1979). Influence of thermal-stresses on the stability of underground-storage cavities. International Journal of Rock Mechanics and Mining Sciences, 16, 117–125. doi:10.1016/0148-9062(79)91448-7
  • Vardoulakis, I. (1984). Rock bursting as a surface instability phenomenon. International Journal of Rock Mechanics end Mining Sciences, 21, 137–144. doi:10.1016/0148-9062(84)91531-6
  • Wawersik, W., & Fairhurst, C. (1970). A study of brittle rock fracture in laboratory compression experiments. International Journal of Rock Mechanics and Mining Sciences, 7, 561–575. doi:10.1016/0148-9062(70)90007-0
  • Wu, G., Wang, D. Y., & Zhai, S. T. (2012). Test research on mechanical properties of marble under high temperature. Chinese Journal of Rock Mechanics and Engineering, 31, 1237–1244. doi:10.3969/j.issn.1000-6915.2012.06.020
  • Xiao-li, Feng, Shen, Xiao-ming, & He-ping. (2008). Mechanical characteristics and microcosmic mechanisms of granite under temperature loads. International Journal of China University of Mining and Technology, 18, 413–417. doi:10.1016/S1006-1266(08)60086-3
  • Xu, T., Zhao, G., Tang, C. A., & Ranjith, P. G. (2014). Modeling of transverse thermal cracking of frp bars embedded in concrete. Arabian Journal for Science and Engineering, 39, 2621–2629. doi:10.1007/s13369-013-0927-0
  • Yavuz, H., Demirdag, S., & Caran, S. (2010). Thermal effect on the physical properties of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences, 47, 94–103. doi:10.1016/j.ijrmms.2009.09.014
  • Zhang, Y. B., & Kang, Z. Q. (2008). Microcosmic mechanism analysis and experimental study of rock burst fracture based on SEM Proceedings. In M. Cai & J. Wang (Eds.), International Young Scholars Symposium on rock mechanics (pp. 873–876). Beijing.
  • Zhao, Y., Huang, J., & Wang, R. (1993). Real-time SEM observations of the microfracturing process in rock during a compression test. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30, 643–652. doi:10.1016/0148-9062(93)91224-7
  • Zuo, J. P., Xie, H. P., & Zhou, H. W. (2012). Investigation of meso-failure behavior of rock under thermal-mechanical coupled effects based on high temperature SEM. Science China-Physics Mechanics & Astronomy, 55, 1855–1862. doi:10.1007/s11433-012-4889-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.