674
Views
3
CrossRef citations to date
0
Altmetric
Articles

3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates

, &
Pages s37-s56 | Received 04 Aug 2017, Accepted 22 Sep 2017, Published online: 06 Oct 2017

References

  • Arthur, J. R. F., & Menzies, B. K. (1972). Inherent anisotropy in a sand. Géotechnique, 22, 115–128.
  • Been, K., & Jefferies, M. G. (1985). State parameter for sands. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 22, 198–198. Elsevier Science.
  • Been, K., & Jefferies, M. (2004). Stress dilatancy in very loose sand. Canadian Geotechnical Journal, 41, 972–989.10.1139/t04-038
  • Cubrinovski, M., & Ishihara, K. (1998). Modelling of sand behaviour based on state concept. Soils and Foundations, 38, 115–127.10.3208/sandf.38.3_115
  • Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29, 47–65.10.1680/geot.1979.29.1.47
  • Dafalias, Y. F., Papadimitriou, A. G., & Li, X. S. (2004). Sand plasticity model accounting for inherent fabric anisotropy. Journal of Engineering Mechanics, 130, 1319–1333.10.1061/(ASCE)0733-9399(2004)130:11(1319)
  • Fazekas, S., Török, J., Kertész, J., & Wolf, D. E. (2006). Morphologies of three-dimensional shear bands in granular media. Physical Review E, 74, 529.10.1103/PhysRevE.74.031303
  • Fu, P. C., & Dafalias, Y. F. (2011a). Study of anisotropic shear strength of granular materials using DEM simulation. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1098–1126.10.1002/nag.v35.10
  • Fu, P. C., & Dafalias, Y. F. (2011b). Fabric evolution within shear bands of granular materials and its relation to critical state theory. International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1918–1948.10.1002/nag.v35.18
  • Gao, Z., Zhao, J., Li, X. S., & Dafalias, Y. F. (2014). A critical state sand plasticity model accounting for fabric evolution. International Journal for Numerical and Analytical Methods in Geomechanics, 38, 370–390.10.1002/nag.v38.4
  • Gu, X. Q., Huang, M. S., & Qian, J. G. (2014). DEM investigation on the evolution of microstructure in granular soils under shearing. Granular Matter, 16, 91–106.10.1007/s10035-013-0467-z
  • Guo, P. J. (2008). Modified direct shear test for anisotropic strength of sand. Journal of Geotechnical and Geoenvironmental Engineering, 134, 1311–1318.10.1061/(ASCE)1090-0241(2008)134:9(1311)
  • Guo, N., & Zhao, J. D. (2013). The signature of shear-induced anisotropy in granular media. Computers and Geotechnics, 47, 1–15.10.1016/j.compgeo.2012.07.002
  • Itasca Consulting Group. (2015). Particle flow code in three dimensions: User’s manual (Version 5.0). Minneapolis.
  • Jiang, M. J., Konrad, J. M., & Leroueil, S. (2003). An efficient technique for generating homogeneous specimens for DEM studies. Computers and Geotechnics, 30, 579–597.10.1016/S0266-352X(03)00064-8
  • Jiang, M. J., Yu, H. S., & Harris, D. (2005). A novel discrete model for granular material incorporating rolling resistance. Computers and Geotechnics, 32, 340–357.10.1016/j.compgeo.2005.05.001
  • Jiang, M. J., Shen, Z. F., & Wang, J. F. (2015). A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances. Computers and Geotechnics, 65, 147–163.10.1016/j.compgeo.2014.12.011
  • Jiang, M. J., Li, T., & Chareyre, B. (2016a). Fabric rates applied to kinematic models: Evaluating elliptical granular materials under simple shear tests via discrete element method. Granular Matter, 18, 1–15.
  • Jiang, M. J., Li, T., & Shen, Z. F. (2016b). Fabric rates of elliptical particle assembly in monotonic and cyclic simple shear tests: A numerical study. Granular Matter, 18, 1–14.
  • Kandasami, R. K., & Murthy, T. G. (2015). Experimental studies on the influence of intermediate principal stress and inclination on the mechanical behaviour of angular sands. Granular Matter, 17, 217–230.10.1007/s10035-015-0554-4
  • Kruyt, N. P. (2012). Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mechanics of Materials, 44, 120–129.10.1016/j.mechmat.2011.07.008
  • Lam, W. K., & Tatsuoka, F. (1988). Effects of initial anisotropic fabric and σ2 on strength and deformation characteristics of sand. Soils and Foundations, 28, 89–106.10.3208/sandf1972.28.89
  • Lee, X., Dass, W. C., & Manzione, C. W. (1992). Characterization of granular material composite structures using computerized tomography. Engineering Mechanics, 268–271. ASCE.
  • Li, X. S., & Dafalias, Y. F. (2000). Dilatancy for cohesionless soils. Géotechnique, 50, 449–460.
  • Li, X. S., & Dafalias, Y. F. (2002). Constitutive modeling of inherently anisotropic sand behavior. Journal of Geotechnical and Geoenvironmental Engineering, 128, 868–880.10.1061/(ASCE)1090-0241(2002)128:10(868)
  • Li, X. S., & Dafalias, Y. F. (2012). Anisotropic critical state theory: Role of fabric. Journal of Engineering Mechanics, 138, 263–275.10.1061/(ASCE)EM.1943-7889.0000324
  • Mahmood, Z., & Iwashita, K. (2010). Influence of inherent anisotropy on mechanical behavior of granular materials based on DEM simulations. International journal for numerical and analytical methods in geomechanics, 34, 795–819.
  • Manzari, M. T., & Dafalias, Y. F. (1997). A critical state two-surface plasticity model for sands. Géotechnique, 47, 255–272.10.1680/geot.1997.47.2.255
  • Miura, S., & Toki, S. (1984). Anisotropy in mechanical properties and its simulation of sands sampled from natural deposits. Soils and Foundations, 24, 69–84.10.3208/sandf1972.24.3_69
  • Miura, K., Miura, S., & Toki, S. (1986). Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils and Foundations, 26, 36–52.10.3208/sandf1972.26.36
  • Ng, T. T. (2009). Discrete element method simulations of the critical state of a granular material. International Journal of Geomechanics, 9, 209–216.10.1061/(ASCE)1532-3641(2009)9:5(209)
  • Ochiai, H., & Lade, P. V. (1983). Three‐dimensional behavior of sand with anisotropic fabric. Journal of Geotechnical Engineering, 109, 1313–1328.10.1061/(ASCE)0733-9410(1983)109:10(1313)
  • Oda, M. (1972). Initial fabrics and their relations to mechanical properties of granular material. Soils and Foundations, 12, 18–36.
  • Oda, M., Koishikawa, I., & Higuchi, T. (1978). Experimental study of anisotropic shear strength of sand by plane strain test. Soils and Foundations, 18, 25–38.10.3208/sandf1972.18.25
  • Oda, M., Nemat-Nasser, S., & Konishi, J. (1985). Stress-induced anisotropy in granular masses. Soils and Foundations, 25, 85–97.10.3208/sandf1972.25.3_85
  • Razeghi, H. R., & Romiani, H. M. (2015). Experimental investigation on the inherent and initial induced anisotropy of sand. KSCE Journal of Civil Engineering, 19, 583–591.10.1007/s12205-012-0373-7
  • Rowe, P. W. (1962). The stress–dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London A: Mathematical, Physical And Engineering Sciences, 1339, 500–527.
  • Satake, M. (1982). Fabric tensor in granular materials. Proceedings of the IUTAM Symposi-um on Deformation and Failure of Granular Materials (pp. 63–68). Delft: Balkema.
  • Schofield, A., & Wroth, P. (1968). Critical state soil mechanics. Cambridge: Cambridge University Press.
  • Seyedi Hosseininia, E. S. (2012). Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles. Particuology, 10, 542–552.10.1016/j.partic.2011.11.015
  • Shen, Z., Jiang, M., & Thornton, C. (2016). Shear strength of unsaturated granular soils: Three-dimensional discrete element analyses. Granular Matter, 18, 1–13.
  • Song, F., Zhang, J. M., & Cao, G. R. (2015). Experimental investigation of asymptotic state for anisotropic sand. Acta Geotechnica, 10, 571–585.10.1007/s11440-014-0357-5
  • Tatsuoka, F., Sakamoto, M., Kawamura, T., & Fukushima, S. (1986). Strength and deformation characteristics of sand in plane strain compression at extremely low pressures. Soils and Foundations, 26, 65–84.10.3208/sandf1972.26.65
  • Ting, J. M., Meachum, L., & Rowell, J. D. (1995). Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages. Engineering Computations, 12, 99–108.10.1108/02644409510799497
  • Tong, Z., Fu, P., Zhou, S., & Dafalias, Y. F. (2014). Experimental investigation of shear strength of sands with inherent fabric anisotropy. Acta Geotechnica, 9, 257–275.10.1007/s11440-014-0303-6
  • Utili, S., Zhao, T., & Houlsby, G. T. (2015). 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power. Engineering Geology, 186, 3–16.10.1016/j.enggeo.2014.08.018
  • Wan, R. G., & Guo, P. J. (1999). A pressure and density dependent dilatancy model for granular materials. Soils and Foundations, 39, 1–11.10.3208/sandf.39.6_1
  • Wan, R. G., & Guo, P. J. (2001). Drained cyclic behavior of sand with fabric dependence. Journal of Engineering Mechanics, 127, 1106–1116.10.1061/(ASCE)0733-9399(2001)127:11(1106)
  • Wan, R. G., Nicot, F., & Darve, F. (2009). Micromechanical formulation of stress dilatancy as a flow rule in plasticity of granular materials. Journal of engineering mechanics, 136, 589–598.
  • Yamada, Y., & Ishihara, K. (1979). Anisotropic deformation characteristics of sand under three dimensional stress conditions. Soils and Foundations, 19, 79–94.10.3208/sandf1972.19.2_79
  • Yan, W. M., & Zhang, L. (2013). Fabric and the critical state of idealized granular assemblages subject to biaxial shear. Computers and Geotechnics, 49, 43–52.10.1016/j.compgeo.2012.10.015
  • Yang, Z. X, & Wu, Y. (2016). Critical state for anisotropic granular materials: A discrete element perspective. International Journal of Geomechanics, 17, 04016054.
  • Yang, Z. X., Li, X. S., & Yang, J. (2008). Quantifying and modelling fabric anisotropy of granular soils. Géotechnique, 58, 237–248.10.1680/geot.2008.58.4.237
  • Yang, L. T., Wanatowski, D., Li, X., Yu, H. S., & Cai, Y. (2016). Laboratory and micromechanical investigation of soil anisotropy. Japanese Geotechnical Society Special Publication, 2, 411–416.10.3208/jgssp.OTH-12
  • Yao, Y., Tian, Y., & Gao, Z. (2017). Anisotropic UH model for soils based on a simple transformed stress method. International Journal for Numerical and Analytical Methods in Geomechanics, 41, 54–78.10.1002/nag.v41.1
  • Zhao, T., Dai, F., Xu, N. W., Liu, Y., & Xu, Y. (2015). A composite particle model for non-spherical particles in DEM simulations. Granular Matter, 17, 763–774.10.1007/s10035-015-0596-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.