244
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical and hygrothermal characterisation of cork concrete composite: experimental and modelling study

, , , &
Pages 456-471 | Received 11 May 2017, Accepted 23 Oct 2017, Published online: 02 Nov 2017

References

  • Ademe. (2014). Les tendances de l’efficacité énergétique dans les pays du bassin méditerranéen, réseau MEDENER [Energy efficiency trends in Mediterranean countries, MEDENER network]. Retrieved from http://www.ademe.fr/sites/default/files/assets/documents/tendances-efficacite energetique-pays-bassin-mediterraneen 8177.pdf.
  • Arnaud, L., Monnet, H., Cordier, C., & Sallet, F. (2005).Modélisation par homogénéisation autocohérente de la conductivité thermique de béton de laine et de chanvre[Modelling by self-consistent homogenization of the thermal conductivity of wool and hemp concrete]. Actes du Congrès Français de Thermique. In A. Lallemand & J. F. Leone(Eds.). Elsevier. Reims, France.
  • Aziz, M. A., Murphy, C. K., & Ramaswamy, S. D. (1979). Lightweight concrete using cork granules. International Journal of Lightweight Concrete, 1, 29–33.10.1016/0262-5075(79)90006-X
  • Bachar, M., Azzouz, L., Rabehi, M., & Mezghiche, B. (2015). Characterization of a stabilized earth concrete and the effect of incorporation of aggregates of cork on its thermo-mechanical properties: Experimental study and modelling. Construction and Building Materials, 74, 259–267.10.1016/j.conbuildmat.2014.09.106
  • Bleu, Plan (2008). Study on climate change and energy in the Mediterranean. Sophia Antipolis. Retrieved from: http://www.eib.org/attachments/country/climate_change_energy_mediteranean_en.pdf.
  • Boutin, C. (1996). Conductivité thermique du béton cellulaire autoclavé: Modélisation par méthode autocohérente [Thermal conductivity of autoclaved aerated concrete: Modeling Self-consistent method]. Matériaux et Constructions, 29, 609–615.
  • Branco, F. G., Tadeu, A., & Reis, M. B. (2007). Can cork be used as a concrete aggregate. International Journal for Housing Science and Its Applications, 32(1), 1–11.
  • BS EN 12390-3 (2009). Testing hardened concrete. Part 3: Compressive strength of test specimens.
  • BS EN 12390-7. (2009). Testing hardened concrete. Part 7: Density of hardened concrete.
  • BS EN 13892-2 (2002). Methods of test for screed materials, Determination of flexural and compressive strength.
  • Cherki, A. A., Remy, B., Khabbazi, A., Jannot, Y., & Baillis, D. (2014). Experimental thermal properties characterization of insulating cork gypsum composite. Construction and Building Materials, 54, 202–209.10.1016/j.conbuildmat.2013.12.076
  • Chindaprasirt, P., & Rukzon, S. (2008). Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Construction and Building Materials, 22, 1601–1606.10.1016/j.conbuildmat.2007.06.010
  • Collet, F., Chamoin, J., Pretot, S., & Lanos, C. (2013). Comparison of the hygric behaviour of three hemp concretes. Energy and Buildings, 62, 294–303.10.1016/j.enbuild.2013.03.010
  • Day, R. L., & Marsh, B. K. (1988). Measurement of porosity in blended cement pastes. Cement and Concrete Research, 18, 63–73.10.1016/0008-8846(88)90122-6
  • EN 12667 (2001). Thermal performance of building materials and products: Determination of thermal resistance by means clustering of guarded hot plate and heat flow meter methods, Products of high and medium thermal resistance. (1 ed.). European Standards.
  • EN ISO 15148. (2002). Hygrothermal performance of building materials and products: Determination of water absorption coefficient by partial immersion. CEN, European Standards.
  • Hashin, Z. (1968). Assessment of the self consistent scheme approximation: Conductivity of particulate composites. Journal of Composite Materials, 2, 284–300.10.1177/002199836800200302
  • Hashin, Z., & Shtrikman, S. (1962). A variational method of the theory of effective magnetic permeability of multiphases materials. Journal of Applied Physics, 33, 3125–3131.10.1063/1.1728579
  • Hernandez-Olivares, F., Bollati, M. R., del Rio, M., & Parga-Landa, B. (1999). Development of cork-gypsum composites for building applications. Construction and Building Materials, 13(4), 179–186.10.1016/S0950-0618(99)00021-5
  • International Union of Pure and Applied Chemistry (1985). Reporting physisorption data for gas / solid systems with special reference to the determination of surface area and porosity area (pp. 603–619).
  • Jannot, Y. (2015, June). Sorption isotherms: Models and determination. Retrieved from http://www.thermique55.com/principal/sorption.pdf.
  • Karade, S. R., Irle, M., Maher, K., & Caldiera, F. (Eds). (2002, September). Cork granules as lightweight aggregate, Sustainable concrete construction. Proceedings of the international conference (pp. 253–262). Scotland: University of Dundee.
  • Karade, S. R., Irle, M., & Maher, K. (2006). Influence of granule properties and concentration on cork-cement compatibility. Holz als Roh- und Werkstoff, 64(4), 281–286.10.1007/s00107-006-0103-2
  • Laoud, B. (2013). Mechanical and physical characterization of lightweight concrete based on limestone sand and cork granules. International Journal of Innovation and Applied Studies, 3(3), 739–748.
  • Matos, A. M., Nunes, N., & Sousa-Coutinho, J. (2015). Cork waste in cement based materials. Construction and Building Materials, 85, 230–239.
  • Maxwell, J. C. (1954). A Treatise on Electricity and Magnetism. Two volumes bound as one (3rd ed.). New York, NY: Dover.
  • Moreira, A., António, J., & Tadeu, A. (2014). Lightweight screed containing cork granules: Mechanical and hygrothermal characterization. Cement and Concrete Composites, 49, 1–8.10.1016/j.cemconcomp.2014.01.012
  • Moussa, T., Garnier, B., & Peerhossaini, H. (2013). Measurement and model on thermal properties of sintered diamond composites. Journal of Alloys and Compounds, 551, 636–642.10.1016/j.jallcom.2012.11.025
  • NF EN ISO 12571 (2000). Hygrothermal Performance of Building Materials and Products, Determination of Hygroscopic Sorption Properties. AFNOR.
  • NF EN ISO 12572. (2001). Hygrothermal Performance of Building Materials and Products, Determination of Water Vapor Transmission properties. AFNOR.
  • Plan Bleu. (2009). Energy sector in the Mediterranean region, situation and prospective 2025. Notes, N°13. Retrieved from http://planbleu.org/sites/default/files/publications/note13_secteur_energetique_uk.pdf
  • Réunion internationale des Laboratoires et Experts des Matériaux (1978). Functional classification of lightweight concrete, Recommendation of TILEM LC2 (pp.281–283).
  • Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle [Calculation of the flow limits of mixed crystals on the basis of the plasticity of single crystals]. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49–58.10.1002/(ISSN)1521-4001
  • Rode, C. (2005). Moisture buffering of building materials. (Report BYG DTU R-126, ISSN 1601-2917, ISBN 87-7877-195). Copenhagen, Denmark: Technical University of Denmark.
  • Rode, C. R., Peuhkuri, R., Hansen, K. K., Time, B., Svennberg, K., Arfvidsson, J., & Ojanen, T. (2015, September). Nordtest project on moisture buffer value of materials. AIVC Conference ‘Energy performance regulation’, Brussels.
  • Silva, S. P., Sabino, M. A., Fernandes, E. M., Correlo, V. M., Boesel, L. F., & Reis, R. L. (2005). Cork: Properties capabilities and applications. International Materials Reviews, 50(6), 345–365.10.1179/174328005X41168
  • Tadeu, A., Moreira, A., António, J., Simões, N., & Simões, I. (2014). Thermal delay provided by floors containing layers that incorporate expanded cork granulate waste. Energy and Buildings, 68, 611–619.10.1016/j.enbuild.2013.10.007
  • Voigt, W. (1889). Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper [On the relation between the two constants of elasticity of isotropic bodies]. Annalen der Physik, 274(12), 573–587.10.1002/(ISSN)1521-3889
  • Wiener, O. (1912). Die Theorie des Mischkörpers für das Feld der stationären Strömung [The theory of the mixing body for the stationary flow field]. Abh Math Phys Klasse Königl Sächs Ges Wiss, 32, 509–604.
  • Wyllie, M. R. J., & Southwick, P. F. (1954). An experimental investigation of the S.P. and resistivity phenomena in dirty sands. Journal of Petroleum Technology, 6(2), 44–57.10.2118/302-G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.