352
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A threshold stresses-based permeability variation model for microcracked porous rocks

, , , &
Pages 787-813 | Received 01 Aug 2017, Accepted 02 Jan 2018, Published online: 15 Jan 2018

References

  • Armitage, P. J. , Faulkner, D. R. , Worden, R. H. , Aplin, A. C. , Butcher, A. R. , & Iliffe, J. (2011). Experimental measurement of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba Field, Algeria. Journal of Geophysical Research: Solid Earth , 116 (B12), 208.
  • Arson, C. , & Pereira, J. M. (2012). Influence of damage on pore size distribution and permeability of rocks. International Journal for Numerical and Analytical Methods in Geomechanics , 37 , 810–831.
  • Batzle, M. L. , Simmons, G. , & Siegfried, R. W. (1980). Microcrack closure in rocks under stress: Direct observation. Journal of Geophysical Research: Solid Earth , 85 , 7072–7090.10.1029/JB085iB12p07072
  • Baud, P. , & Reuschlé, T. (1997). A theoretical approach to the propagation of interacting cracks. Geophysical Journal International , 130 (2), 460–468.10.1111/gji.1997.130.issue-2
  • Benson, P. M. , Meredith, P. G. , & Schubnel, A. (2006). Role of void space geometry in permeability evolution in crustal rocks at elevated pressure. Journal of Geophysical Research: Solid Earth , 111 (B12), 203.
  • Brace, W. F. (1980). Permeability of crystalline and argillaceous rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 17 (5), 241–251.10.1016/0148-9062(80)90807-4
  • Brace, W. F. , Orange, A. S. , & Madden, T. R. (1965). The effect of pressure on the electrical resistivity of water-saturated crystalline rocks. Journal of Geophysical Research: Solid Earth , 70 , 5669–5678.10.1029/JZ070i022p05669
  • Brace, W. F. , Paulding, B. , & Scholz, C. (1966). Dilatancy in the fracture of crystalline rocks. Journal of Geophysical Research , 71 , 3939–3953.10.1029/JZ071i016p03939
  • Brace, W. F. , Walsh, J. B. , & Frangos, W. T. (1968). Permeability of granite under high pressure. Journal of Geophysical Research , 73 (6), 2225–2236.10.1029/JB073i006p02225
  • Cai, M. , Kaiser, P. K. , Tasaka, Y. , Kurose, H. , Minami, M. , & Maejima, T. (2008). Numerical simulation of acoustic emission in large-scale underground excavations. In The 42nd US Rock Mechanics Symposium (USRMS), American Rock Mechanics Association .
  • Cai, M. , Kaiser, P. K. , Tasaka, Y. , Maejima, T. , & Minami, M. (2004). Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences , 41 (5), 833–847.10.1016/j.ijrmms.2004.02.001
  • Cappa, F. (2011). Influence of hydromechanical heterogeneities of fault zones on earthquake ruptures. Geophysical Journal International , 185 (2), 1049–1058.10.1111/gji.2011.185.issue-2
  • Cappa, F. , & Rutqvist, J. (2011). Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2 . International Journal of Greenhouse Gas Control , 5 (2), 336–346.10.1016/j.ijggc.2010.08.005
  • Chen, L. , Liu, J. F. , Wang, C. P. , Su, R. , & Wang, J. (2014). Characterization of damage evolution in granite under compressive stress condition and its effect on permeability. International Journal of Rock Mechanics and Mining Sciences , 71 , 340–349.10.1016/j.ijrmms.2014.07.020
  • Chen, Y. F. , Hu, S. H. , Wei, K. , Hu, R. , Zhou, C. B. , & Jing, L. R. (2014). Experimental characterization and micromechanical modeling of damage-induced permeability variation in Beishan granite. International Journal of Rock Mechanics and Mining Sciences , 71 , 64–76.10.1016/j.ijrmms.2014.07.002
  • Chen, Y. F. , Hu, S. H. , Zhou, C. B. , & Jing, L. R. (2014). Micromechanical modeling of anisotropic damage-induced permeability variation in crystalline rocks. Rock Mechanics and Rock Engineering , 47 (5), 1775–1791.10.1007/s00603-013-0485-5
  • Chen, Y. F. , Wei, K. , Liu, W. , Hu, S. H. , Hu, R. , & Zhou, C. B. (2016). Experimental characterization and micromechanical modelling of anisotropic slates. Rock Mechanics and Rock Engineering , 49 (9), 3541–3557.10.1007/s00603-016-1009-x
  • Cho, Y. , Ozkan, E. , & Apaydin, O. G. (2013). Pressure-dependent natural-fracture permeability in shale and its effect on shale-gas well production. SPE Reservoir Evaluation & Engineering , 16 , 216–228.10.2118/159801-PA
  • David, C. , Menéndez, B. , & Darot, M. (1999). Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. International Journal of Rock Mechanics and Mining Sciences , 36 (4), 433–448.10.1016/S0148-9062(99)00010-8
  • David, C. , Wong, T. F. , Zhu, W. , & Zhang, J. (1994). Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust. Pure and Applied Geophysics , 143 (1–3), 425–456.10.1007/BF00874337
  • Dong, J. J. , Hsu, J. Y. , Wu, W. J. , Shimamoto, T. , Hung, J. H. , Yeh, E. C. , … Sone, H. (2010). Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. International Journal of Rock Mechanics and Mining Sciences , 47 (7), 1141–1157.10.1016/j.ijrmms.2010.06.019
  • Eberhardt, E. , Stead, D. , Stimpson, B. , & Read, R. (1998). Identifying crack initiation and propagation thresholds in brittle rocks. Canadian Geotechnical Journal , 35 (2), 222–233.10.1139/t97-091
  • Evans, J. P. , Forster, C. B. , & Goddard, J. V. (1997). Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology , 19 (11), 1393–1404.10.1016/S0191-8141(97)00057-6
  • Gavrilenko, P. , & Gueguen, Y. (1989). Pressure dependence of permeability: A model for cracked rocks. Geophysical Journal International , 98 (1), 159–172.10.1111/gji.1989.98.issue-1
  • Gavrilenko, P. , Melikadzé, G. , Chélidzé, T. , Gibert, D. , & Kumsiashvili, G. (2000). Permanent water level drop associated with the Spitak Earthquake: Observations at Lisi Borehole (Republic of Georgia) and modelling. Geophysical Journal International , 143 , 83–98.10.1046/j.1365-246x.2000.00210.x
  • Ghabezloo, S. , Sulem, J. , & Saint-Marc, J. (2009). Evaluation of a permeability-porosity relationship in a low-permeability creeping material using a single transient test. International Journal of Rock Mechanics and Mining Sciences , 46 (4), 761–768.10.1016/j.ijrmms.2008.10.003
  • Hamiel, Y. , Lyakhovsky, V. , & Agnon, A. (2004). Coupled evolution of damage and porosity in poroelastic media: Theory and applications to deformation of porous rocks. Geophysical Journal International , 156 (3), 701–713.10.1111/gji.2004.156.issue-3
  • Hu, D. W. , Zhou, H. , Zhang, F. , & Shao, J. F. (2010). Evolution of poroelastic properties and permeability in damaged sandstone. International Journal of Rock Mechanics and Mining Sciences , 47 (6), 962–973.10.1016/j.ijrmms.2010.06.007
  • Hu, S. H. , Chen, Y. F. , & Zhou, C. B. (2014). Laboratory test and mesomechanical analysis of permeability variation of Beishan granite. Chinese Journal of Rock Mechanics Engineering , 33 (11), 2200–2209.
  • Hudson, J. A. , Stephansson, O. , Andersson, J. , Tsang, C. F. , & Jing, L. R. (2001). Coupled T-H-M issues relating to radioactive waste repository design and performance. International Journal of Rock Mechanics and Mining Sciences , 38 (1), 143–161.10.1016/S1365-1609(00)00070-8
  • Jiang, T. , Shao, J. F. , Xu, W. Y. , & Zhou, C. B. (2010). Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks. International Journal of Rock Mechanics and Mining Sciences , 47 , 703–713.10.1016/j.ijrmms.2010.05.003
  • Johnson, D. L. , & Manning, H. J. (1986). Theory of pressure dependent resistivity in crystalline rocks. Journal of Geophysical Research: Solid Earth , 91 (B11), 11611–11617.10.1029/JB091iB11p11611
  • Klein, E. , & Reuschlé, T. (2004). A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime. International Journal of Rock Mechanics and Mining Sciences , 41 (6), 975–986.10.1016/j.ijrmms.2004.03.003
  • Kranz, R. L. (1979). Crack-crack and crack-pore interactions in stressed granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 16 (1), 37–47.10.1016/0148-9062(79)90773-3
  • Le Gonidec, Y. , Sarout, J. , Wassermann, J. , & Nussbaum, C. (2014). Damage initiation and propagation assessed from stress-induced microseismic events during a mine-by test in the Opalinus Clay. Geophysical Journal International , 198 (1), 126–139.10.1093/gji/ggu122
  • Levasseur, S. , Collin, F. , Charlier, R. , & Kondo, D. (2013). A micro-macro approach of permeability evolution in rocks excavation damaged zones. Computers and Geotechnics , 49 , 245–252.10.1016/j.compgeo.2012.12.001
  • Li, X. , Wei, H. , Chen, B. , Liu, X. , Wang, W. , & Zhao, X. (2008). Multi-stage fracturing stimulations improve well performance in tight oil reservoirs of the Changqing Oilfield. In International Petroleum Technology Conference, Kuala Lumpur, Malaysia ; December 3-5 IPTC 12303.
  • Liu, M. M. , Chen, Y. F. , Wei, K. , & Zhou, C. B. (2017). Interpretation of gas transient pulse tests on low-porosity rocks. Geopysical Journal International , 210 (3), 1845–1857.10.1093/gji/ggx272
  • Liu, W. , Chen, Y. F. , Hu, R. , Zhou, W. , & Zhou, C. B. (2016). A two-step homogenization-based permeability model for deformable fractured rocks with consideration of coupled damage and friction effects. International Journal of Rock Mechanics and Mining Sciences , 89 , 212–226.10.1016/j.ijrmms.2016.09.009
  • Lockner, D. (1993). The role of acoustic emisson in the study of rock fracture. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 30 , 883–900.10.1016/0148-9062(93)90041-B
  • Lyakhovsky, V. , & Hamiel, Y. (2007). Damage evolution and fluid flow in poroelastic rock. Izvestiya Physics of the Solid Earth , 43 (1), 13–23.10.1134/S106935130701003X
  • Ma, L. K. , Wang, J. , Zhao, X. G. , & Tham, L. G. (2012). Experimental study on permeability of Beishan granite. In M. Cai (Ed.), Rock mechanics: Achievements and ambitions . London: Taylor and Francis Group.
  • Martin, C. D. , & Chandler, N. A. (1994). The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 31 (6), 643–659.10.1016/0148-9062(94)90005-1
  • McKee, C. , Bumb, A. , & Koenig, R. (1988). Stress-dependent permeability and porosity of coal and other geologic formations. SPE Formation Evaluation , 3 (1), 81–91.10.2118/12858-PA
  • Mitchell, T. M. , & Faulkner, D. R. (2008). Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones. Journal of Geophysical Research: Solid Earth , 113 (B11), 412.
  • Mori, T. , Nakajima, M. , Iwano, K. , Tanaka, M. , Kikuyama, S. , & Machijima, Y. (2007). Application of the fiber optical oscillation sensor to AE measurement at the rock compression test. In 11th Congress of the International Society for Rock Mechanics , 1101–1104.
  • Morris, J. P. , Lomov, I. N. , & Glenn, L. A. (2003). A constitutive model for stress-induced permeability and porosity evolution of Berea sandstone. Journal of Geophysical Research: Solid Earth , 108 (B10), 2485.
  • Nguyen, V. H. , Gland, N. , Dautriat, J. , David, C. , Wassermann, J. , & Guélard, J. (2014). Compaction, permeability evolution and stress path effects in unconsolidated sand and weakly consolidated sandstone. International Journal of Rock Mechanics and Mining Sciences , 67 , 226–239.10.1016/j.ijrmms.2013.07.001
  • Nicksiar, M. , & Martin, C. D. (2012). Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mechanics and Rock Engineering , 45 (4), 607–617.10.1007/s00603-012-0221-6
  • Oda, M. , Takemura, T. , & Aoki, T. (2002). Damage growth and permeability change in triaxial compression tests of Inada granite. Mechanics of Materials , 34 (6), 313–331.10.1016/S0167-6636(02)00115-1
  • Paterson, M. S. (1983). The equivalent channel model for permeability and resistivity in fluid-saturated rock: A re-appraisal. Mechanics of Materials , 2 (4), 345–352.10.1016/0167-6636(83)90025-X
  • Rawling, G. C. , Goodwin, L. B. , & Wilson, J. L. (2001). Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology , 29 (1), 43–46.10.1130/0091-7613(2001)029<0043:IAPSAH>2.0.CO;2
  • Rios, E. H. , Figueiredo, I. , Moss, A. K. , Pritchard, T. N. , Glassborow, B. A. , Domingues, A. B. G. , & Azeredo, R. B. V. (2016). NMR permeability estimators in ‘chalk’ carbonate rocks obtained under different relaxation times and MICP size scalings. Geophysical Journal International , 206 (1), 260–274.10.1093/gji/ggw130
  • Scholz, C. H. (1968). The frequency-magnitude relation of microfacturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America , 58 (1), 399–415.
  • Schulze, O. , Popp, T. , & Kern, H. (2001). Development of damage and permeability in deforming rock salt. Engineering Geology , 61 (2), 163–180.10.1016/S0013-7952(01)00051-5
  • Seo, Y. S. , Jeong, G. C. , Kim, J. S. , & Ichikawa, Y. (2002). Microscopic observation and contact stress analysis of granite under compression. Engineering Geology , 63 (3), 259–275.10.1016/S0013-7952(01)00086-2
  • Shao, J. F. , Zhou, H. , & Chau, K. T. (2005). Coupling between anisotropic damage and permeability variation in brittle rocks. International Journal for Numerical and Analytical Methods in Geomechanics , 29 (12), 1231–1247.10.1002/(ISSN)1096-9853
  • Sibson, R. H. , & Rowland, J. V. (2003). Stress, fluid pressure and structural permeability in seismogenic crust, North Island, New Zealand. Geophysical Journal International , 154 (2), 584–594.10.1046/j.1365-246X.2003.01965.x
  • Souley, M. , Homand, F. , Pepa, S. , & Hoxha, D. (2001). Damage-induced permeability changes in granite: A case example at the URL in Canada. International Journal of Rock Mechanics and Mining Sciences , 38 (2), 297–310.10.1016/S1365-1609(01)00002-8
  • Stormont, J. C. , & Daemen, J. J. K. (1992). Laboratory study of gas permeability changes in rock salt during deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 29 (4), 323–342.
  • Talwani, P. , & Acree, S. (1985). Pore pressure diffusion and the mechanism of reservoir-induced seismicity. In Earthquake Prediction (pp. 947–965). Birkhäuser Basel.10.1007/978-3-0348-6245-5
  • Tang, C. A. , Tham, L. G. , Lee, P. K. K. , Yang, T. H. , & Li, L. C. (2002). Coupled analysis of flow, stress and damage (FSD) in rock failure. International Journal of Rock Mechanics and Mining Sciences , 39 (4), 477–489.10.1016/S1365-1609(02)00023-0
  • Tapponnier, P. , & Brace, W. F. (1976). Development of stress-induced microcracks in Westerly Granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts , 13 (4), 103–112.10.1016/0148-9062(76)91937-9
  • Tsang, C. F. , Barnichon, J. D. , Birkholzer, J. , Li, X. L. , Liu, H. H. , & Sillen, X. (2012). Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations. International Journal of Rock Mechanics and Mining Sciences , 49 , 31–44.10.1016/j.ijrmms.2011.09.015
  • Walsh, J. B. , & Brace, W. F. (1984). The effect of pressure on porosity and the transport properties of rock. Journal of Geophysical Research: Solid Earth , 89 (B11), 9425–9431.10.1029/JB089iB11p09425
  • Wang, H. L. , Xu, W. Y. , Jia, C. J. , Cai, M. , & Meng, Q. X. (2016). Experimental research on permeability evolution with microcrack development in sandstone under different fluid pressures. Journal of Geotechnical and Geoenvironmental Engineering , 142 (6), 04016014.10.1061/(ASCE)GT.1943-5606.0001462
  • Wang, H. L. , Xu, W. Y. , Lui, Z. B. , Chao, Z. M. , & Meng, Q. X. (2016). Dependency of hydromechanical properties of monzonitic granite on confining pressure and fluid pressure under compression. International Journal of Modern Physics B , 30 (16), 1650086.10.1142/S0217979216500867
  • Wang, S. G. , Elsworth, D. , & Liu, J. S. (2013). Permeability evolution during progressive deformation of intact coal and implications for instability in underground coal seams. International Journal of Rock Mechanics and Mining Sciences , 58 , 34–45.10.1016/j.ijrmms.2012.09.005
  • Wassermann, J. , Senfaute, G. , Amitrano, D. , & Homand, F. (2009). Evidence of dilatant and nondilatant damage processes in oolitic iron ore: P-wave velocity and acoustic emission analyses. Geophysical Journal International , 177 (3), 1343–1356.10.1111/gji.2009.177.issue-3
  • Wibberley, C. A. J. , & Shimamoto, T. (2005). Earthquake slip weakening and asperities explained by thermal pressurization. Nature , 436 (7051), 689–692.10.1038/nature03901
  • Wong, T. F. , David, C. , & Zhu, W. (1997). The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research: Solid Earth , 102 (B2), 3009–3025.10.1029/96JB03281
  • Xu, P. , & Yang, S. Q. (2016). Permeability evolution of sandstone under short-term and long-term triaxial compression. International Journal of Rock Mechanics and Mining Sciences , 85 , 152–164.10.1016/j.ijrmms.2016.03.016
  • Yang, S. Q. , Huang, Y. H. , Jiao, Y. Y. , Zeng, W. , & Yu, Q. L. (2015). An experimental study on seepage behavior of sandstone material with different gas pressures. Acta Mechanica Sinica , 31 (6), 837–844.10.1007/s10409-015-0432-7
  • Zhang, S. , Cox, S. F. , & Paterson, M. S. (1994). The influence of room temperature deformation on porosity and permeability in calcite aggregates. Journal of Geophysical Research: Solid Earth , 99 (B8), 15761–15775.10.1029/94JB00647
  • Zhao, X. G. , Cai, M. , Wang, J. , & Ma, L. K. (2013). Damage stress and acoustic emission characteristics of the Beishan granite. International Journal of Rock Mechanics and Mining Sciences , 64 , 258–269.10.1016/j.ijrmms.2013.09.003
  • Zheng, J. , Zheng, L. , Liu, H. H. , & Ju, Y. (2015). Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock. International Journal of Rock Mechanics and Mining Sciences , 78 , 304–318.10.1016/j.ijrmms.2015.04.025
  • Zhu, Q. Z. , Kondo, D. , & Shao, J. F. (2008). Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: Role of the homogenization scheme. International Journal of Solids and Structures , 45 (5), 1385–1405.10.1016/j.ijsolstr.2007.09.026
  • Zhu, W. L. (2006). Quantitative characterization of permeability reduction associated with compactive cataclastic flow. Earthquakes: Radiated Energy and the Physics of Faulting , 170 , 143–151.
  • Zhu, W. L. , David, C. , & Wong, T. F. (1995). Network modeling of permeability evolution during cementation and hot isostatic pressing. Journal of Geophysical Research: Solid Earth , 100 (B8), 15451–15464.10.1029/95JB00958
  • Zhu, W. L. , Montési, L. G. J. , & Wong, T. F. (2007). A probabilistic damage model of stress-induced permeability anisotropy during cataclastic flow. Journal of Geophysical Research: Solid Earth , 112 (B10), 207.
  • Zhu, W. L. , & Wong, T. F. (1996). Permeability reduction in a dilating rock: Network modeling of damage and tortuosity. Geophysical Research Letters , 23 (22), 3099–3102.10.1029/96GL03078
  • Zhu, W. L. , & Wong, T. F. (1997). The transition from brittle faulting to cataclastic flow: Permeability evolution. Journal of Geophysical Research: Solid Earth , 102 (B2), 3027–3041.10.1029/96JB03282
  • Zoback, M. D. , & Byerlee, J. D. (1975). Effect of microcrack dilatancy on permeability of Westerly granite. Journal of Geophysical Research , 80 (5), 752–755.10.1029/JB080i005p00752

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.