209
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

The advantages of using a geochemical transport model including thermodynamic equilibrium, kinetic control and surface complexation to simulate the durability of concretes exposed to chlorides and sulphates

ORCID Icon, &
Pages 552-563 | Received 06 Oct 2017, Accepted 23 Feb 2018, Published online: 15 Mar 2018

References

  • Barbarulo, R., Marchand, J., Snyder, K. A., & Prene, S. (2000). Dimensional analysis of ionic transport problems in hydrated cement systems Part 1. Theoretical considerations. Cement and Concrete Research, 30, 1955–1960.
  • Baroghel-Bouny, V., Belin, P., Castellote, M., Rafai, N., Rougeau, P., & Yssorche-Cubaynes, M. P. (2002, September). Which toolkit for durability evaluation as regards chloride ingress into concrete? Part I: Comparison between various methods for assessing the chloride diffusion coefficient of concrete in saturated conditions. In Third RILEM workshop on Testing and Modelling the chloride Ingress into Concrete, number. Madrid.
  • Baroghel-Bouny, V., Thiéry, M., & Wang, X. (2011). Modelling of isothermal coupled moisture -- Ion transport in cementitious materials. Cement and Concrete Research, 41, 828–841.
  • Baroghel-Bouny, V., Wang, X., Thiery, M., Saillio, M., & Barberon, F. (2012a). Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis. Cement and Concrete Research, 42, 1207–1224.
  • Baroghel-Bouny, V., Wang, X., Thiery, M., Saillio, M., & Barberon, F. (2012b). Prediction of chloride binding isotherms of cementitious materials by analytical model or numerical inverse analysis. Cement and Concrete Research, 42(9), 1207–1224.
  • Bary, B., Leterrier, N., Deville, E., & Le, P. (2014). Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cement and Concrete Composites, 49, 70–83.
  • Beaudoin, J. J., Ramachandran, V. S., & Feldman, R. F. (1990). Interaction of chloride and C-S-H. Cement and Concrete Research, 20, 875–883.
  • De Windt, L. & Devillers, P. (2010). Modeling the degradation of Portland cement pastes by biogenic organic acids. Cement and Concrete Research, 40(8), 1165–1174.
  • De Windt, L., Marsal, F., Tinseau, E., & Pellegrini, D. (2008). Reactive transport modeling of geochemical interactions at a concrete/argillite interface, Tournemire site (France). Physics and Chemistry of the Earth, 33, 295–305.
  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: hydrous ferric oxide. New York, NY: John Wiley & Sons.
  • Elakneswaran, Y. (2009). Multi-ionic transport in cementitious materials with ion-cement hydrates interactions (PhD thesis). Hokkaido University.
  • Elakneswaran, Y., Iwasa, A., Nawa, T., Sato, T., & Kurumisawa, K. (2010). Ion-cement hydrate interactions govern multi-ionic transport model for cementitious materials. Cement and Concrete Research, 40(12), 1756–1765.
  • Hamid, S. A. (1981). The crystal structure of the 11 A natural tobermorite Ca2.25[Si3O7.5(OH)1.5].1H2O. Zeitschrift fur Kristallographie -- Crystalline Materials, 154, 189–198.
  • Han, S.-H. (2007). Influence of diffusion coefficient on chloride ion penetration of concrete structure. Construction and Building Materials, 21(2), 370–378.
  • Henocq, P. (2005). Mod\’{e}lisation des interactions ioniques a la surface des Silicates de Calcium Hydrat\’{e}s (PhD thesis). Université de Laval-Quebec et Université de Cergy-Pontoise.
  • Hosokawa, Y., Yamada, K., Johannesson, B., & Nilsson, L.-O. (2011). Development of a multi-species mass transport model for concrete with account to thermodynamic phase equilibriums. Materials and Structures, 44(9), 1577–1592.
  • Hosokawa, Y., Yamada, K., Johannesson, B. F., & Nilsson, L. O. (2006, September). Reproduction of chloride ion bindings in hardened cement paste using thermodynamic equilibrium models. In 2nd International Symposium on Advances in Concrete Through Science and Engineering. Quebec City, Canada: RILEM Publications SARL.
  • Jensen, M. M., Weerdt, K. D., Johannesson, B., & Geiker, M. R. (2015). Use of a multi-species reactive transport model to simulate chloride ingress in mortar exposed to NaCl solution or sea-water. Computational Materials Science, 105, 75–82.
  • Kalinichev, A. G., & Kirkpatrick, R. J. (2002). Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases. Chemistry of Materials, 14(8), 3539–3549.
  • Kulik, D. A. & Kersten, M. (2001). Aqueous solubility diagrams for cementitious waste stabilization systems: II, end-member stoichiometries of ideal calcium silicate hydrate solid solutions. Journal of American Society of Ceramics, 84(12), 3017–3026.
  • Kulik, D. A., Wagner, T., Dmytrieva, S. V., Kosakowski, G., Hingerl, F. F., Chudnenko, K. V., & Berner, U. (2013). GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences, 17, 1–24.
  • Labbez, C., Pochard, I., Jonsson, B., & Nonat, A. (2011). C-S-H/solution interface: Experimental and Monte Carlo studies. Cement and Concrete Research, 41(2), 161–168.
  • Lalan, P., Dauzères, A., Windt, L. D., Bartier, D., Sammaljärvi, J., Barnichon, J.-D., ... Detilleux, V. (2016). Impact of a 70°C temperature on an ordinary Portland cement paste/claystone interface: An in situ experiment. Cement and Concrete Research, 83, 164–178.
  • Lasaga, A. C., Soler, J. M., Ganor, J., Burch, T. E., & Nagy, K. L. (1994). Chemical weathering rate laws and global geochemical cycles. Geochimica Cosmochimica Acta, 58(10), 2361–2386.
  • Lothenbach, B., Bary, B., Le Bescop, P., Schmidt, T., & Leterrier, N. (2010). Sulfate ingress in Portland cement. Cement and Concrete Research, 40, 1211–1225.
  • Lothenbach, B., Matschei, T., Möschner, G., & Glasser, F. P. (2008). Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cement and Concrete Research, 38, 1–18.
  • Maltais, Y., Samson, E., & Marchand, J. (2004). Predicting the durability of Portland cement systems in aggressive environments-Laboratory validation. Cement and Concrete Research, 34(9), 1579–1589.
  • Marty, N. C. M., Claret, F., Lassin, A., Tremosa, J., Blanc, P., Madé, B., ... Tournassat, C. (2015). A database of dissolution and precipitation rates for clay-rocks minerals. Applied Geochemistry, 55, 108–118.
  • Marty, N. C. M., Tournassat, C., Burnol, A., Giffaut, E., & Gaucher, E. C. (2009). Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions. Journal of Hydrology, 364(1–2), 58–72.
  • Nguyen, T. Q., Petković, J., Dangla, P., & Baroghel-Bouny, V. (2008). Modelling of coupled ion and moisture transport in porous building materials. Construction and Building Materials, 22(11), 2185–2195.
  • Samson, E. & Marchand, J. (2007a). Modeling the effect of temperature on ionic transport in cementitious materials. Cement and Concrete Research, 37, 455–468.
  • Samson, E. & Marchand, J. (2007b). Modeling the transport of ions in unsaturated cement-based materials. Computers & Structures, 85(23–24), 1740–1756.
  • Soive, A., Rozière, E., & Loukili, A. (2016). Parametrical study of the cementitious materials degradation under external sulfate attack through numerical modeling. Construction and Building Materials, 112, 267–275.
  • Soive, A. & Tran, V. Q. (2017). External sulfate attack of cementitious materials: New insights gained through numerical modeling including dissolution/precipitation kinetics and surface complexation. Cement and Concrete Composites, 83, 263–272.
  • Song, Z., Jiang, L., Liu, J., & Liu, J. (2015). Influence of cation type on diffusion behavior of chloride ions in concrete. Construction and Building Materials, 99, 150–158.
  • Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., ... Yeh, G. T. (2015). Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19(3), 445–478.
  • Steefel, C. I., & Lasaga, A. C. (1994). A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. American Journal of Science, 294, 529–592.
  • Tambach, T. J., Koenen, M., Wasch, L. J., & Bergen, F. V. (2015). Geochemical evaluation of CO 2 injection and containment in a depleted gas field. International Journal of Greenhouse Gas Control, 32, 61–80.
  • Taylor, H. F. W. (1997). Cement chemistry (2nd ed.). London: Thomas Telford.
  • Tran, V. Q., Soive, A., & Baroghel-Bouny, V. (in press). New model for chloride reactive transport in concrete including thermodynamic equilibrium, kinetic control and surface complexation. Cement and Concrete Research.
  • Trotignon, L., Devallois, V., Peycelon, H., Tiffreau, C., & Bourbon, X. (2007). Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste. Physics and Chemistry of the Earth, 32, 259–274.
  • Viallis-Terrisse, H. (2000). Interaction des Silicates de Calcium Hydrates-principaux constituants duciment avec les chlorures d’alcalins. Analogie avec les argiles (PhD thesis). Université de Dijon.
  • Viallis-Terrisse, H., Nonat, A., & Petit, J. C. (2001). Zeta-potential study of calcium silicate hydrates interacting with alkaline cations. Journal of Colloid and Interface Science, 244, 58–65.
  • Xu, T., Sonnenthal, E., Spycher, N., & Pruess, K. (2012). TOUGHREACT user’s guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media, version 2.0. Report LBNL-DRAFT. Lawrence Berkeley National Laboratory, Berkeley.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.