129
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Macro-polyolefin fiber pull-out behaviour from HPC matrix: evaluation of type of surface treatment

, &
Pages 1522-1532 | Received 13 Nov 2017, Accepted 02 May 2018, Published online: 11 May 2018

References

  • Alberti, M. G., Enfedaque, A., Gálvez, J. C., & Ferreras, A. (2016). Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes. Construction and Building Materials, 112. Elsevier, 607–622. doi:10.1016/j.conbuildmat.2016.02.128
  • Alwan, J. M., Naaman, A. E., & Hansen, W. (1992). Pull-out work of steel fibers from cementitious composites : Analytical investigation. ScienceDirect, 13, 247–255.
  • Babafemi, A. J., & Boshoff, W. P. (2017). Pull-out response of macro synthetic fibre from concrete matrix: effect of loading rate and embedment length. Construction and Building Materials, 135. Elsevier, 590–599. doi:10.1016/j.conbuildmat.2016.12.160
  • Bentur, A., Peled, A., & Yankelevsky, D. (1997). Enhanced bonding of low modulus polymer fibers-cement matrix by means of crimped geometry. Cement and Concrete Research, 27(7), 1099–1111.10.1016/S0008-8846(97)00088-4
  • Breitenbücher, R., Meschke, G., Song, F., & Zhan, Y. (2014). Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Structural Concrete, 15(2), 126–135. doi:10.1002/suco.201300058
  • Caggiano, A., & Martinelli, E. (2012). A unified formulation for simulating the bond behaviour of fibres in cementitious materials. 42. Elsevier, 204–213. doi:10.1016/j.matdes.2012.05.003
  • Czoboly, O., & Balázs, G. L. (2017). Are fibers sensitive to mixing? Structural Concrete, 18(1), 19–28. doi:10.1002/suco.201600039
  • Deng, Z., Shi, F., Yin, S., & Tuladhar, R. (2016). Characterisation of macro polyolefin fibre reinforcement in concrete through round determinate panel test. Construction and Building Materials, 121. Elsevier, 229–235. doi:10.1016/j.conbuildmat.2016.05.134
  • Han, T.-Y., Lin, W.-T., Cheng, A., Huang, R., & Huang, C.-C. (2012). Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume. Materials and Design, 37. Elsevier, 569–576. doi:10.1016/j.matdes.2011.10.038
  • Kanda, T., Lin, Z., & Li, V. C. (2000). Tensile stress-strain modeling of pseudostrain hardening cementitious composites. Journal of Materials in Civil Engineering, 12(2), 147–156.10.1061/(ASCE)0899-1561(2000)12:2(147)
  • Kim, B. J., Yi, C., & Yu-Ri, A. (2017). Effect of embedment length on pullout behavior of amorphous steel fiber in portland cement composites. Construction and Building Materials, 143. Elsevier, 83–91. doi:10.1016/j.conbuildmat.2017.03.030
  • López-Buendía, A. M., María Dolores Romero-Sánchez, Verónica Climent, & Celia Guillem. 2013. Surface treated polypropylene (PP) fibres for reinforced concrete. Cement and Concrete Research, 54. Elsevier, 29–35. doi:10.1016/j.cemconres.2013.08.004
  • Maida, P. D., Sciancalepore, C., Radi, E., & Bondioli, F. (2018). Effects of nano-silica treatment on the flexural post cracking behaviour of polypropylene macro-synthetic fibre reinforced concrete. Mechanics Research Communications, 88. Elsevier, 12–18. doi:10.1016/j.mechrescom.2018.01.004
  • Martinelli, E., Caggiano, A., & Xargay, H. (2015). An experimental study on the post-cracking behaviour of hybrid industrial. Recycled Steel Fibre-reinforced Concrete, 94. Elsevier Ltd, 290–98. doi:10.1016/j.conbuildmat.2015.07.007
  • Pakravan, H. R., Jamshidi, M., Latifi, M., & Chehimi, M. M. (2012). Polymeric fibre adhesion to the cementitious matrix related to the fibres type, water to cement ratio and curing time. International Journal of Adhesion and Adhesives, 35. Elsevier, 102–107. doi:10.1016/j.ijadhadh.2012.02.006
  • Pakravan, H. R., Jamshidi, M., & Latifi, M. (2013). Polymeric fibers pull-out behavior and microstructure as cementitious composites reinforcement. The Journal of The Textile Institute,104(10),1056–1064. doi:10.1080/00405000.2013.773124
  • Pakravan, H. R., & Memariyan, F. (2017). Modification of low-surface energy fibers used as reinforcement in cementitious composites: A review. Polymer - Plastics Technology and Engineering, 56(3), 227–239. doi:10.1080/03602559.2016.1233266
  • Park, C.-G., & Lee, J.-H. (2012). Effect of styrene butadiene latex polymer contents on the bond properties of macro polypropylene fiber in polymer-modified cement-based composites. Journal of Applied Polymer Science, 126, E330–E337. doi:10.1002/app
  • Park, S. H., Ryu, G. S., Koh, K. T., & Kim, D. J. (2014). Effect of shrinkage reducing agent on pullout resistance of high-strength steel fibers embedded in ultra-high-performance concrete. Cement & Concrete Composites, 49. Elsevier, 59–69. doi:10.1016/j.cemconcomp.2013.12.012
  • Payrow, P., Nokken, M., Banu, D., & Feldman, D. (2011). Effect of surface treatment on the post-peak residual strength and toughness of polypropylene/polyethylene-blended fiber-reinforced concrete. Journal of Composite Materials, 45(20), 2047–2054. doi:10.1177/0021998311399481
  • Silva, E. R., Coelho, J. F. J., & Bordado, J. C. (2013). Strength improvement of mortar composites reinforced with newly hybrid-blended fibres: Influence of fibres geometry and morphology. Construction and Building Materials, 40. Elsevier, 473–480. doi:10.1016/j.conbuildmat.2012.11.017
  • Silva, F., de Andrade, R. D., Filho, T., Mobasher, B., & Chawla, N. (2010). A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites. Matéria (Rio de Janeiro), 15(2), 338–344.10.1590/S1517-70762010000200035
  • Singh, S., Shukla, A., & Brown, R. (2004). Pullout behavior of polypropylene fibers from cementitious matrix. Cement and Concrete Research, 34, 1919–1925. doi:10.1016/j.cemconres.2004.02.014
  • Suji, D., Natesan, S. C., & Murugesan, R. (2007). Experimental study on behaviors of polypropylene fibrous concrete beams. Journal of Zhejiang University-SCIENCE A, 8(7), 1101–1109. doi:10.1631/jzus.2007.A1101
  • Tagnit-Hamou, A., Vanhove, Y., & Petrov, N. (2005). Microstructural analysis of the bond mechanism between polyolefin fibers and cement pastes. Cement and Concrete Research, 35, 364–370. doi:10.1016/j.cemconres.2004.05.046
  • Tosun, K., Felekoǧlu, B., & Baradan, B. (2012). Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading. Cement and Concrete Composites, 34(4), 508–520. doi:10.1016/j.cemconcomp.2011.12.001
  • Villiers, J. P., van Zijl, G. P. A. G., & van Rooyen, A. S. (2017). Bond of deformed steel reinforcement in lightweight foamed concrete. Structural Concrete, 18(3), 496–506. doi:10.1002/suco.201600019
  • Won, J.-P., Lim, D.-H., & Park, C.-G. (2006). Bond behaviour and flexural performance of structural synthetic fibre-reinforced concrete. Magazine of Concrete Research, 58(6), 401–410.10.1680/macr.2006.58.6.401
  • Wu, H. C., & Li, V. C. (1999). Fiber/cement interface tailoring with plasma treatment. Cement and Concrete Composites, 21, 205–212.10.1016/S0958-9465(98)00053-5
  • Xu, M., Hallinan, B., & Wille, K. (2016). Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete. Cement and Concrete Composites, 70. Elsevier, 98–109. doi:10.1016/j.cemconcomp.2016.03.014
  • Yoo, D.-Y., Park, J.-J., & Kim, S.-W. (2017). Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type. Composite Structures, 174. Elsevier, 263–276. doi:10.1016/j.compstruct.2017.04.064
  • Zhu, Y., Yang, Y., & Yao, Y. (2012). Use of slag to improve mechanical properties of engineered cementitious composites (ECCs) with high volumes of fly ash. Construction & Building Materials, 36. Elsevier, 1076–1081. doi:10.1016/j.conbuildmat.2012.04.031
  • Zile, E., & Zile, O. (2013). Effect of the fiber geometry on the pullout response of mechanically deformed steel fibers. Cement and Concrete Research, 44, 18–24. doi:10.1016/j.cemconres.2012.10.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.