273
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A method to assess the suffusion susceptibility of low permeability core soils in compacted dams based on construction data

, , , &
Pages 626-644 | Received 07 Dec 2017, Accepted 02 May 2018, Published online: 23 Jun 2018

References

  • Bendahmane, F., Marot, D., & Alexis, A. (2008). Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(1), 57–67.
  • Chang, D. S., & Zhang, L. M. (2013). Extended internal stability criteria for soils under seepage. Soils and Foundations, 53(4), 569–583.
  • Chapuis, R. P. (2004). Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian geotechnical journal, 41(5), 787–795.
  • Engineers, U. A. (1953). Filter experiments and design criteria (pp. 3–360). Vickburg: Technical Memorandum, Waterways Experiment Station.
  • Foster, M. (2007). Application of no, excessive and continuing erosion criteria to existing dams. Internal Erosion of Dams and their Foundations, 103–114.
  • Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000–1024.
  • Fry, J.J. (2012). Introduction to the process of internal erosion in hydraulic structures: embankment dams and dikes. Erosion of Geomaterials, 1–37.
  • Garner, S., & Fannin, R. (2010). Understanding internal erosion: a decade of research following a sinkhole event. The International Journal on Hydropower & Dams, 17(3), 93–98.
  • Haghighi, I. (2012). Caractérisation des phénomènes d’érosion et de dispersion: développement d’essais et applications pratiques ( PhD thesis), Université Paris Est.
  • Icold. (2013). Internal erosion of existing dams, levees and dykes, and their foundations.Bulletin. Internal Erosion Processes and Engineering Assessment (Vol. 1, pp. 164).
  • Ke, L., & Takahashi, A. (2014). Triaxial erosion test for evaluation of mechanical consequences of internal erosion. Geotechnical Testing Journal, 37(2), 347–364.
  • Kenney, T., & Lau, D. (1985). Internal stability of granular filters. Canadian geotechnical journal, 22(2), 215–225.
  • Kovács, G. (2011). Seepage hydraulics (Vol. 10). Amsterdam: Elsevier Scientific Publishing Co.
  • Le, V.T. (2017). Development of a new device and statistical analysis for characterizing soil sensibility face suffusion process ( PhD thesis), Université de Nantes, France.
  • Le, V.T., Marot, D., Rochim, A., Bendahmane, F., & Nguyen, H.H. (2016). Suffusion susceptibility characterization by triaxial erodimeter and statistical analysis. In 8th International Conference on Scour and Erosion (ISCE-8); Oxford, UK,
  • Le, V. T., Marot, D., Rochim, A., Bendahmane, F., & Nguyen, H. H. (2018). Suffusion susceptibility investigation by energy-based method and statistical analysis. Canadian Geotechnical Journal, 55(1), 57–68.
  • Leroueil, S., Le Bihan, J.-P., Sebaihi, S., & Alicescu, V. (2002). Hydraulic conductivity of compacted tills from northern quebec. Canadian geotechnical journal, 39(5), 1039–1049.
  • Li, M. (2008). Seepage induced instability in widely graded soils ( PhD thesis), University of British Columbia.
  • Li, M., & Fannin, R. J. (2008). Comparison of two criteria for internal stability of granular soil. Canadian Geotechnical Journal, 45(9), 1303–1309.
  • Malenfant-Corriveau, M. (2016). Propriétés hydrauliques d’un till compacté possédant un faible pourcentage de particules argileuses ( Master’s thesis), Université Laval.
  • Marot, D., & Benamar, A. (2012). Suffusion, transport and filtration of fine particles in granular soil. Erosion of Geomaterials, 39–79.
  • Marot, D., Bendahmane, F., & Nguyen, H. H. (2012). Influence of angularity of coarse fraction grains on internal erosion process. La Houille Blanche, International Water Journal, 6, 47–53.
  • Marot, D., Le, V. D., Garnier, J., Thorel, L., & Audrain, P. (2012). Study of scale effect in an internal erosion mechanism: centrifuge model and energy analysis. European Journal of Environmental and Civil Engineering, 16(1), 1–19.
  • Marot, D., Regazzoni, P.-L., & Wahl, T. (2011). Energy-based method for providing soil surface erodibility rankings. Journal of Geotechnical and Geoenvironmental Engineering, 137(12), 1290–1293.
  • Marot, D., Rochim, A., Nguyen, H.-H., Bendahmane, F., & Sibille, L. (2016). Assessing the susceptibility of gap-graded soils to internal erosion: proposition of a new experimental methodology. Natural Hazards, 83(1), 365–388.
  • Moffat, R. A., & Fannin, R. J. (2006). A large permeameter for study of internal stability in cohesionless soils. Geotechnical Testing Journal, 29(4), 273–279.
  • Perzlmaier, S., Muckenthaler, P., & Koelewijn, A. (2007). Hydraulic criteria for internal erosion in cohesionless soil. Assessment of risk of internal erosion of water retaining structures: Dams, dykes and levees. Intermediate Report of the European Working Group of ICOLD (pp. 30–44). Munich, Germany. Technical University of Munich.
  • Phoon, K.-K., & Kulhawy, F. H. (1999). Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36(4), 625–639.
  • Reddi, L. N., Lee, I.-M., & Bonala, M. V. (2000). Comparison of internal and surface erosion using flow pump tests on a sand-kaolinite mixture. Geotechnical Testing Journal, 23(1), 116–122.
  • Regazzoni, P.-L., & Marot, D. (2011). Investigation of interface erosion rate by jet erosion test and statistical analysis. European Journal of Environmental and Civil Engineering, 15(8), 1167–1185.
  • Rochim, A., Marot, D., Sibille, L., & Le, V. T. (2017). Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(7), 04017025.
  • Rönnqvist, H., Fannin, J., & Viklander, P. (2014). On the use of empirical methods for assessment of filters in embankment dams. Géotechnique Letters, 4(4), 272–282.
  • Sherard, J. L., & Dunnigan, L. P. (1989). Critical filters for impervious soils. Journal of Geotechnical Engineering, 115(7), 927–947.
  • Skempton, A., & Brogan, J. (1994). Experiments on piping in sandy gravels. Geotechnique, 44(3), 449–460.
  • Smith, M. (2000). Analyse thermique et géostatistique d’un noyau de barrage en remblai ( Master’s thesis). Université Laval.
  • Smith, M., & Konrad, J.-M. (2011). Assessing hydraulic conductivities of a compacted dam core using geostatistical analysis of construction control data. Canadian Geotechnical Journal, 48(9), 1314–1327.
  • Tomlinson, S. S., & Vaid, Y. (2000). Seepage forces and confining pressure effects on piping erosion. Canadian Geotechnical Journal, 37(1), 1–13.
  • Wan, C. F., & Fell, R. (2008). Assessing the potential of internal instability and suffusion in embankment dams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3), 401–407.
  • Watabe, Y., Leroueil, S., & Le Bihan, J.-P. (2000). Influence of compaction conditions on pore-size distribution and saturated hydraulic conductivity of a glacial till. Canadian Geotechnical Journal, 37(6), 1184–1194.
  • Zhong, C. H., Le, V. T., Bendahmane, F., Marot, D., & Yin, Z. Y. (2017). Investigation of spatial scale effects on suffusion susceptibility. Journal of Geotechnical and Geoenvironmental Engineering, (accepted)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.