231
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Effect of nanosilica particles on the rheological and mechanical properties of cement pastes using polyhydroxyl and polycarboxylate-based superplasticizers

, &
Pages 2230-2254 | Received 04 Feb 2018, Accepted 09 Jul 2018, Published online: 04 Nov 2018

References

  • ACI Committee 238. (2008). ACI 238R-08: Report on measurements of workability and rheology of fresh concrete. MI, USA: American Concrete Institute.
  • Andersen, P. J. (1986). The effect of superplasticizers and air-entraining agents on the zeta potential of cement particles. Cement and Concrete Research, 16(6), 931–940. doi:10.1016/0008-8846(86)90017-7.
  • ASTM C-109M. (2016). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens), vol. 04.01. Philadelphia (EE.UU.): American Society of Testing and Materials (ASTM).
  • ASTM C-1437. (2015). Standard test method for flow of hydraulic cement mortar, vol. 04.01. Philadelphia (EE.UU.): American Society of Testing and Materials (ASTM).
  • ASTM C-143M. (2015). Standard test method for slump of hydraulic-cement concrete, vol. 04.02. Philadelphia (EE.UU.): American Society of Testing and Materials (ASTM).
  • ASTM C-494M. (2017). Standard specification for chemical admixtures for concrete, vol. 04.02. Philadelphia (EE.UU.): American Society of Testing and Materials (ASTM).
  • ASTM C-1157. (2017). Standard performance specification for hydraulic cement, vol. 04.01. Philadelphia (EE.UU.): American Society of Testing and Materials (ASTM).
  • Bastami, M., Baghbadrani, M., & Aslani, F. (2014). Performance of nano-silica modified high strength concrete at elevated temperatures. Construction and Building Materials, 68, 402–408. doi:10.1016/j.conbuildmat.2014.06.026.
  • Berra, M., Carassiti, F., Mangialardi, T., Paolini, A. E., & Sebastiani, M. (2012). Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Construction and Building Materials, 35, 666–675. doi:10.1016/j.conbuildmat.2012.04.132.
  • Cai, Y., Hou, P., Cheng, X., Du, P., & Ye, Z. (2017). The effects of nanoSiO2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Construction and Building Materials, 148(1), 770–780. doi:10.1016/j.conbuildmat.2017.05.091.
  • Diamantonis, N., Marinos, I., Katsiotis, M. S., Sakellariou, A., Papathanasiou, A., Kaloidas, V., & Katsioti, M. (2010). Investigations about the influence of fine additives on the viscosity of cement paste for self-compacting concrete. Construction and Building Materials, 24(8):1518–1522. doi:10.1016/j.conbuildmat.2010.02.005.
  • Fernández, J. M., Duran, A., Navarro-Blasco, I., Lanas, J., Sirera, R., & Alvarez, J. I. (2013). Influence of nanosilica and a polycarboxylate ether superplasticizer on the performance of lime mortars. Cement and Concrete Research, 43, 12–24. doi:10.1016/j.cemconres.2012.10.007.
  • Fernández-Altable, V., & Casanova, I. (2006). Influence of mixing sequence and superplasticiser dosage on the rheological response of cement pastes at different temperatures. Cement and Concrete Research, 36(7), 1222–1230. doi:10.1016/j.cemconres.2006.02.016.
  • Ferraris, C. F., Obla, K. H., & Hill, R. (2001). The influence of mineral admixtures on the rheology of cement paste and concrete. Cement and Concrete Research, 31(2), 245–255. doi:10.1016/S0008-8846(00)00454-3.
  • Flatt, R. J., & Houst, Y. F. (2001). A simplified view on chemical effects perturbing the action of superplasticizers. Cement and Concrete Research, 31(8), 1169–1176. doi:10.1016/S0008-8846(01)00534-8.
  • García-Taengua, E., Sonebi, M., Hossain, K. M. A., Lachemi, M., & Khatib, J. (2015). Effects of the addition of nanosilica on the rheology, hydration and development of the compressive strength of cement mortars. Composites Part B: Engineering, 81, 120–129. doi:10.1016/j.compositesb.2015.07.009.
  • Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2010). Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Composites Part B: Engineering, 41(8), 673–677. doi:10.1016/j.compositesb.2010.08.003.
  • Hidalgo J., Chen, C., & Struble, L. (2008). Correlation between paste and concrete flow behavior. ACI Materials Journal, 105(3), 281–288.
  • Hosseini, P., Hosseinpourpia, R., Pajum, A., Khodavirdi, M., Izadi, H., & Vaezi, A. (2014). Effect of nanoparticles and aminosilane interaction on the performances of cement-based composites: An experimental study. Construction and Building Materials, 66, 113–124. doi:10.1016/j.conbuildmat.2014.05.047.
  • Hou, P., Kawashima, S., Wang, K., Corr, D. J., Qian, J., & Shah, S. P. (2013). Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar. Cement and Concrete Composites, 35(1), 12–22. doi:10.1016/j.cemconcomp.2012.08.027.
  • Khaloo, A., Mobini, M. H., & Hosseini, P. (2016). Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Construction and Building Materials, 113, 188–201. doi: 10.1016/j.conbuildmat.2016.03.041.
  • Kong, D., Corr, D. J., Hou, P., Yang, Y., & Shah, S. P. (2015). Influence of colloidal silica sol on fresh properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale. Cement and Concrete Composites, 63, 30–41. doi:10.1016/j.cemconcomp.2015.08.002.
  • Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., & Shah, S. P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement based materials. Construction and Building Materials, 37, 707–715. doi:10.1016/j.conbuildmat.2012.08.006.
  • Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557–562. doi:10.1016/j.conbuildmat.2013.02.066.
  • Leemann, A., & Winnefeld, F. (2007). The effect of viscosity modifying agents on mortar and concrete. Cement and Concrete Composites, 29(5), 341–349. doi: 10.1016/j.cemconcomp.2007.01.004.
  • Li, H., Xiao, H. G., Yuan, J., & Ou, J. (2004). Microstructure of cement mortar with nanoparticles. Composites Part B: Engineering, 35(2), 185–189. doi:0.1016/S1359-8368(03)00052-0.
  • Madani, H., Bagheri, A., Parhizkar, T., & Raisghasemi, A. (2014). Chloride penetration and electrical resistivity of concretes containing nanosilica hydrosols with different specific surface areas. Cement and Concrete Composites, 53, 18–24. doi:10.1016/j.cemconcomp.2014.06.006.
  • Martins, R. M., & Bombard, A. J. F. (2012). Rheology of fresh cement paste with superplasticizer and nanosilica admixtures studied by response surface methodology. Materials and Structures, 45(6), 905–921.
  • Najigivi, A., Khaloo, A., Iraji zad, A., & Rashid, S. A. (2013). Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete. Composites Part B: Engineering, 54, 52–58. doi:10.1016/j.compositesb.2013.04.035.
  • Olanrewaju, D. O., & Akinpelu, A. A. (2014). Lightweight concrete using local industrial by product. Journal of Mechanics Engineering and Automotion, 4, 505–510.
  • Pade, C. (Ed.). (2006, May). Environmental impact of self-compacting concrete. Proceedings of ECOserve meeting, Warsaw. Poland.
  • Perrot, A., Lecompte, T., Khelifi, H., Brumaud, C., Hot, J., & Roussel, N. (2012). Yield stress and bleeding of fresh cement pastes. Cement and Concrete Research. 42(7), 937–944. doi:10.1016/j.cemconres.2012.03.015.
  • Petit, J. Y., Wirquin, E., Vanhove, Y., & Khayat, K. (2007). Yield stress and viscosity equations for mortars and self-consolidating concrete. Cement and Concrete Research, 37(5), 655–670. doi:10.1016/j.cemconres.2007.02.009.
  • Pourjavadi, A., Fakoorpoor, S. M., Khaloo, A., & Hosseini, P. (2012). Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles. Materials & Design, 42, 94–101. doi:10.1016/j.matdes.2012.05.030.
  • Puerto, J. D., Lizarazo-Marriaga, J., Hernández, G. N. (2018). Application of nanosilica particles under limited dispersal conditions in cement-based paste and mortar mixtures. European Journal of Environmental and Civil Engineering. doi:10.1080/19648189.2018.1455610.
  • Qing, Y., Zenan, Z., Deyu, K., & Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21(3), 539–545. doi:10.1016/j.conbuildmat.2005.09.001.
  • Quercia, G., Hüsken, G., & Brouwers, H. J. H. (2012). Water demand of amorphous nano silica and its impact on the workability of cement paste. Cement and Concrete Research, 42(2), 344–357. doi:10.1016/j.cemconres.2011.10.008.
  • Quercia, G., Lazaro, A., Geus, J. W., & Brouwers, H. J. H. (2013). Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cement and Concrete Composites, 44, 77–92. doi:10.1016/j.cemconcomp.2013. 05.006.
  • Ravina, D. (Ed.). (1975). Retempering of prolonged mixing concrete with admixtures in hot weather. In ACI Publications (Eds.). ACI Journal Proceedings (pp. 291–295). MI, USA: American Concrete Institute.
  • Saak, A. W., Jennings, H. M., & Shah, S. P. (2004). A generalized approach for the determination of yield stress by slump and slump flow. Cement and Concrete Research, 34(3), 363–371. doi:10.1016/j.cemconres.2003.08.005.
  • Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D., & Repette, W. L. (2009). Effect of nano-silica on rheology and fresh properties of cement pastes and mortars. Construction and Building Materials, 23(7), 2487–2491. doi:10.1016/j.conbuildmat.2009.02.005.
  • Singh, L. P., Karade, S. R., Bhattacharyya, S. K., Yousuf, M. M., & Ahalawat, S. (2013). Beneficial role of nanosilica in cement based materials – A review. Construction and Building Materials, 47, 1069–1077. doi:10.1016/j.conbuildmat.2013.05.052.
  • Sobolev, K., Flores, I., & Hermosillo, R. (2006). Nanomaterials and nanotechnology for high performance cement composites. In: Proceedings of ACI session on nanotechnology of concrete: recent developments and future perspectives (pp. 91–118). Denver, USA: American Concrete Institute.
  • Sonebi, M., Bassuoni, M. T., Kwasny, J., & Amanuddin, A. K. (2014). Effect of nanosilica on rheology, fresh properties, and strength of cement-based grouts. Journal of Materials in Civil Engineering, 27(4), 04014145. doi:10.1061/(ASCE)MT.1943-5533.0001080.
  • The American Ceramic Society. (2010). How nanotechnology can change the concrete world. In The American Ceramic Society (Eds.), Progress in nanotechnology: Applications (pp. 113–116). Hoboker, NJ: Wiley.
  • Wallevik, O. H., & Wallevik, J. E. (2011). Rheology as a tool in concrete science: The use of rheographs and workability boxes. Cement and Concrete Research, 41(12), 1279–1288. doi:10.1016/j.cemconres.2011.01.009.
  • Yahia, A., & Khayat, K. H. (2001). Analytical models for estimating yield stress of high performance pseudoplastic grout. Cement and Concrete Research, 31(5), 731–738. doi:10.1016/S0008-8846(01)00476-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.