144
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Influence of metakaolin additive and nanoparticle surface treatment on the durability of white cement based concrete

Pages 2270-2283 | Received 04 Sep 2017, Accepted 20 Jul 2018, Published online: 27 Sep 2018

References

  • Ahmad, S., Hakeem, I., & Maslehuddin, M. (2015). Development of an optimum mixture of ultra-high performance concrete. European Journal of Environmental and Civil Engineering, 20(9), 1106–1126. doi:10.1080/19648189.2015.1090925
  • Badogiannis, E., Aggeli, E., Papadakis, V. G., & Tsivilis, S. (2015). Evaluation of chloride – Penetration resistence of metakaolin concrete by means of a diffusion – Binding model and the k-value concept. Cement and Concrete Composites, 63, 1–7. doi:10.1016/j.cemconcomp.2015.07.012
  • Barbhuiya, S., Chow, P., & Memon, S. (2015). Microstructure, hydration and nanomechanical properties of concrete containing metakaolin. Construction and Building Materials, 95, 696–702. doi:10.1016/j.conbuildmat.2015.07.101
  • Benli, A., Karatas, M., & Bakir, Y. (2017). An experimental study of different curing regimes on the mechanical properties and sorptivity of self-compacting mortars with fly ash and silica fume. Construction and Building Materials, 144, 552–562. doi:10.1016/j.conbuildmat.2017.03.228
  • Bingöl, A. F., & Tohumcu, I. (2013). Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume. Materials and Design, 51, 12–18. doi:10.1016/j.matdes.2013.03.106
  • Boháč, M., Palou, M., Novotný, R., Másilko J., Všianský, D., & Staněk, T. (2014). Investigation on early hydration of ternary Portland cement-blast-furnace slag–metakaolin blends. Construction and Building Materials, 64, 333–341. doi:10.1016/j.conbuildmat.2014.04.018
  • Bravo, M., de Brito, J., Evangelista, L., & Pacheco, L. (2017). Superplasticizer’s efficiency on the mechanical properties of recycled aggregates concrete: Influence of recycled aggregates composition and incorporation ratio. Construction and Building Materials, 153, 129–138. doi:10.1016/j.conbuildmat.2017.07.103
  • BS EN 206-1. (2006). Concrete. Specification, performance, production and conformity.
  • C 109/C 109M-07. (2007). Compressive strength of hydraulic cement mortars.
  • Chira, A., Kumar, A., Vlach, T., Laiblová, L., Škapin, A. S., & Hájek, P. (2016). Property improvements of alkali resistant glass fibres/epoxy composite with nanosilica for textile reinforced concrete applications. Materials & Design, 89, 146–155. doi:10.1016/j.matdes.2015.09.122
  • Chung, C. W., Shon C. S., & Kim Y. S. (2010). Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze-thaw cycles. Construction and Building Materials, 24, 1739–1745. doi:10.1016/j.conbuildmat.2010.02.015
  • Claisse, P. A. (2014). 3 - Surface tests to determine transport properties of concrete – I: The tests, Transport Properties of Concrete, 26–42. doi:10.1533/9781782423195.26
  • CSN 731322. (1993). Determination of frost resistance of concrete.
  • CSN EN 1015-3. (1999). Methods of test for mortar for masonry. Determination of consistence of fresh mortar (by flow table).
  • CSN EN 12350-7. (2009). Testing fresh concrete. Air content. Pressure methods.
  • Drdácký, M., Fratini, F., Frankeová, D., & Slížková, Z. (2013). The Roman mortars used in the construction of the Ponte di Augusto (Narni, Italy)–A comprehensive assessment. Construction and Building Materials, 38, 1117–1128. doi:10.1016/j.conbuildmat.2012.09.044
  • De Belie, N., Gruyaert, E., Al-Tabbaa, A., Antonaci, P., Baera, C., Bajare, D., … Jonkers, H. M. (2018). A review of self-healing concrete for damage management of structures. Advanced Materials Interfaces. 1800074 doi:10.1002/admi.201800074
  • Duan, P., Shui, Z., Chen, W., & Shen, C. (2012). Influence of metakaolin on pore structure-related properties and thermodynamic stability of hydrate phases of concrete in seawater environment. Construction and Building Materials, 36, 947–953. doi:10.1016/j.conbuildmat.2012.06.073
  • Fabbri, B., Gualtieri, S., & Leonardi, C. (2013). Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Applied Clay Science, 73, 2–10. doi:10.1016/j.clay.2012.09.019
  • Farnam, Y., Washington, T., & Weiss J. (2015). The influence of calcium chloride salt solution on the transport properties of cementitious materials. Advances in Civil Engineering, 2015, 929864. doi:10.1155/2015/929864
  • Gbozee, M., Zheng, K., He, F., & Zeng, X. (2018). The influence of aluminium from metakaolin on chemical binding of chloride ions in hydrated cement pastes. Applied Clay Science, 158, 186–194. doi:10.1016/j.clay.2018.03.038
  • Hassan, A. A. A., Lachemi, M., & Hossain, K. M. A. (2012). Effect of metakaolin and silica fume on the durability of self-consolidating concrete. Cement and Concrete Composites, 34, 801–807. doi:10.1016/j.cemconcomp.2012.02.013
  • Jain, J. A., & Neithalath, N. (2010). Chloride transport in fly ash and glass powder modified concretes – Influence of test methods on microstructure. Cement and Concrete Composites, 32, 148–156. doi:10.1016/j.cemconcomp.2009.11.010
  • Kavitha, O. R., Shanthi, V. M., Arulraj, G. P., & Sivakumar, V. R. (2016). Microstructural studies on eco-friendly and durable self-compacting concrete blended with metakaolin. Applied Clay Science, 124-125, 143–149. doi:10.1016/j.clay.2016.02.011
  • Kubissa, W., Jaskulski, R., & Reiterman, P. (2017). Ecological concrete based on blast-furnace cement with incorporated coarse recycled concrete aggregate and fly ash addition. Journal of Renewable Materials, 5, 53–61. doi:10.7569/JRM.2017.634103
  • Kurda, R., De Brito, J., & Silvestre, J. D. (2017). Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cement and Concrete Composites, 84, 198–213. doi:10.1016/j.cemconcomp.2017.09.009
  • Kurdowski, W. (2010). The problem of compatibility of admixture with cement, another approach. Cement Wapno Beton, 15(5), 296–305.
  • Kuzielová, E., Žemlička, M., Bartoničková, E., & Palou, M. T. (2017). The correlation between porosity and mechanical properties of multicomponent systems consisting of Portland cement–slag–silica fume–metakaolin. Construction and Building Materials, 135, 306–314. doi:10.1016/j.conbuildmat.2016.12.105
  • Li, H., Zhang, M. H., & Ou, J. P. (2006). Abrasion resistance of concrete containing nano-particles for pavement. Wear, 260, 1262–1266. doi:10.1016/j.wear.2005.08.006
  • Machner, A., Zajac, M., Haha, M. B., Kjellsen, K. O., Geiker, M. R., & De Weerdt, K. (2018). Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin. Cement and Concrete Research, 107, 163–181. doi:10.1016/j.cemconres.2018.02.002
  • Mosaberpanah, M. A., & Eren, O. (2016). CO2-full factorial optimization of an ultra-high performance concrete mix design. European Journal of Environmental and Civil Engineering, 22(4), 450–463. doi:10.1080/19648189.2016.1210030
  • Neville, A. M. (1996). Properties of Concrete (4th and final ed., p. 844). New York: Wiley & Sons.
  • Nordtest Method NT Build 492. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments.
  • Orduz, L. E. Z., Portela, G., Suárez, O. M., & Cáceres, A. D. (2016). Compatibility analysis between Portland cement type I and micro nano SiO2 in the presence of polycarboxylate type superplasticizers. Cogent Engineering, 3, 1260952. doi:10.1080/23311916.2016.1260952
  • Poon, C. S., Kou, S. C., & Lam, L. (2006). Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construction and Building Materials, 20, 858–865. doi:10.1016/j.conbuildmat.2005.07.001
  • Sahmaran, M., Yildirim, G., & Erdem, T. K. (2013). Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cement and Concrete Composites, 35, 89–101. doi:10.1016/j.cemconcomp.2012.08.013
  • Santhanam, M. (2011). Effect of solution concentration on the attack of concrete by combined sulphate and chloride solutions. European Journal of Environmental and Civil Engineering, 15(7), 1003–1015. doi:10.1080/19648189.2011.9695289
  • Santos, F. N., de Sousa, S. R. G., Bombard, A. J. F., & Vieira, S. L. (2017). Rheological study of cement paste with metakaolin and/or limestone filler using Mixture Design of Experiments. Construction and Building Materials, 43, 92–103. doi:10.1016/j.conbuildmat.2017.03.001
  • Scarfato, P., Di Maio, L., Fariello, M. L., Russo, P., & Incarnato, L. (2012). Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement. Cement and Concrete Composites, 34, 297–305. doi:10.1016/j.cemconcomp.2011.11.006
  • Sfikas, I. P., Badogiannis, E. G., & Trezos, K. G. (2014). Rheology and mechanical characteristics of self-compacting concrete mixtures containing metakaolin. Construction and Building Materials, 64, 121–129. doi:10.1016/j.conbuildmat.2014.04.048
  • Shekarchi, M., Bonakdar, A., Bakhshi, M., Mirdamadi, A., & Mobasher, B. (2010). Transport properties in metakaolin blended concrete. Construction and Building Materials, 24, 2217–2223. doi:10.1016/j.conbuildmat.2010.04.035
  • Shekari, A. H., & Razzaghati, M. S. (2011). Influence of nano particles on durability and mechanical properties of high performance concrete. Procedia Engineering, 14, 3036–3041. doi:10.1016/j.proeng.2011.07.382
  • Silva, D. A., Wenk, H. R., & Monteiro, P. J. M. (2005). Comparative investigation of mortars from Roman Colosseum and cistern. Thermochimica Acta, 438, 35–40. doi:10.1016/j.tca.2005.03.003
  • Soriano, L., Monzó, J., Bonilla, M., Tashima, M. M., Payá, J., & Borrachero, M. V. (2013). Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cement and Concrete Composites, 42, 41–48. doi:10.1016/j.cemconcomp.2013.05.007
  • Su, Y., Li, J., Wu, C., Wu, P., & Li, Z. X. (2016). Influences of nano-particles on dynamic strength of ultra high performance concrete. Composites Part B, 91, 595–609. doi:10.1016/j.compositesb.2016.01.044
  • Subasi, A., & Emiroglu, M. (2015). Effect of metakaolin substitution on physical, mechanical and hydration process of White Portland cement. Construction and Building Materials, 95, 257–268. doi:10.1016/j.conbuildmat.2015.07.125
  • Thomas, M. D. A., Hooton, R. D., Scott, A., & Zibara, H. (2012). The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cement and Concrete Research, 42, 1–7. doi:10.1016/j.cemconres.2011.01.001
  • Vieira, T., Alves, A., De Brito, J., Correia, J. R., & Silva, R. V. (2016). Durability-related performance of concrete containing fine recycled aggregates from crushed bricks and sanitary waste. Materials and Design, 90, 767–776. doi:10.1016/j.matdes.2015.11.023
  • Vimmrová, A. Keppert, M., Michalko, O., & Černý, R. (2014). Calcined gypsum-lime metakaolin binders: Design of optimal composition. Cement and Concrete Composites, 52, 91–96. doi:10.1016/j.cemconcomp.2014.05.011
  • Wang, D., Zhou, X., Fu, B., & Zhang, L. (2018). Chloride ion penetration resistance of concrete containing fly ash and silica fume against combined freezing-thawing and chloride attack. Construction and Building Materials, 169, 740–747. doi:10.1016/j.conbuildmat.2018.03.038
  • Wang, G. M., Kong, Y., Shui, Z. H., Li, Q., & Han, J. L. (2014). Experimental investigation on chloride diffusion and binding in concrete containing metakaolin, Corrosion Engineering. Science and Technology, 49(4), 282–286. doi:10.1179/1743278213Y.0000000134
  • Wongkeo, W., Thongsanitgarn,P., Ngamjarurojana, A., & Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials and Design, 64, 261–269. doi:10.1016/j.matdes.2014.07.042
  • Woo, R. S. C., Zhu, H., Chow, M. M. K., Leung, C. K. Y., & Kim, J. K. (2008). Barrier performance of silane–clay nanocomposite coatings on concrete structure. Composites Science and Technology, 68(14), 2828–2836. doi:10.1016/j.compscitech.2007.10.028
  • Záleská, M., Pavlíková, M., & Pavlík, Z. (2015). Classification of a-SiO2 Rich Materials. Materials Science Forum, 824, 33–38. doi:10.4028/www.scientific.net/MSF.824.33
  • Zhang, B., & Poon, C.S. (2017). Internal curing effect of high volume furnace bottom ash (FBA) incorporation on lightweight aggregate concrete. Journal of Sustainable Cement-Based Materials, 6, 366–383. doi:10.1080/21650373.2017.1299053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.