335
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Estimating normal effective stress degradation in sand under undrained simple shear condition

, , &
Pages 170-189 | Received 31 Mar 2017, Accepted 05 Sep 2018, Published online: 24 Oct 2018

References

  • Aghakouchak, A., Sim, W. W., & Jardine, R. J. (2015). Stress-path laboratory tests to characterise the cyclic behaviour of piles driven in sands. Soils and Foundations, 55(5), 917–928. doi:10.1016/j.sandf.2015.08.001
  • Andersen, K. H. (2009). Bearing capacity under cyclic loading-offshore, along the coast, and on land. The 21st Bjerrum lecture presented in Oslo, 23 November 2007 Canadian Geotechnical Journal, 46(5), 513–535. doi:10.1139/T09-003
  • Andria-Ntoanina, I., Canou, J., & Dupla, J. (2010). Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone. France: Laboratoire Navier–Géotechnique. CERMES, ENPC/LCPC.
  • Bjerrum, L., & Landva, A. (1966). Direct simple-shear tests on a Norwegian quick clay. Géotechnique, 16(1), 1–20. doi:10.1680/geot.1966.16.1.1
  • Dief, H. M., & Figueroa, J. L. (2007). Liquefaction assessment by the unit energy concept through centrifuge and torsional shear tests. Canadian Geotechnical Journal, 44(11), 1286–1297. doi:10.1139/T07-059
  • Dupla, J., & Canou, J. (1994). Caractérisation mécanique du sable de Fontainebleau apartir d’essais triaxiaux de compression et d’extension. Rapport Interne CLOUTERRE II, CERMES–ENPC, Paris.
  • Dyvik, R., Berre, T., Lacasse, S., & Raadim, B. (1987). Comparison of truly undrained and constant volume direct simple shear tests. Géotechnique, 37(1), 3–10. doi:10.1680/geot.1987.37.1.3
  • Fakharian, K., & Evgin, E. (1997). Cyclic simple-shear behavior of sand-steel interfaces under constant normal stiffness condition. Journal of Geotechnical and Geoenvironmental Engineering, 123(12), 1096–1105. doi:10.1061/(ASCE)1090-0241(1997)123:12(1096)
  • Gaudin, C., Schnaid, F., & Garnier, J. (2005). Sand characterization by combined centrifuge and laboratory tests. International Journal of Physical Modelling in Geotechnics, 5(1), 42–56. doi:10.1680/ijpmg.2005.050104
  • Gavin, K., Igoe, D., & Doherty, P. (2011). Piles for offshore wind turbines: A state of the art review. Geotechnical Engineering, 164(4), 245–256 doi:10.1680/geng.2011.164.4.245
  • Georgiannou, V., & Tsomokos, A. (2008). Comparison of two fine sands under torsional loading. Canadian Geotechnical Journal, 45(12), 1659–1672. doi:10.1139/T08-083
  • Green, R., Mitchell, J., & Polito, C. (2000). An energy-based excess pore pressure generation model for cohesionless soils. InD.W. Smith, J.P. Carter (Eds.) Proceedings of the John Booker Memorial Symposium (pp. 16–17). Rotterdam, Netherlands: A.A. Balkema Publishers.
  • Gu, C., Wang, J., Cai, Y. Q., & Guo, L. (2014). Influence of cyclic loading history on small strain shear modulus of saturated clays. Soil Dynamics and Earthquake Engineering, 66, 1–12 doi:10.1016/j.soildyn.2014.06.027
  • Gu, C., Wang, J., Cai, Y. Q., Sun, L., Wang, P., & Dong, Q. Y. (2016). Deformation characteristics of overconsolidated clay sheared under constant and variable confining pressure. Soils and Foundations, 56(3), 427–439. doi:10.1016/j.sandf.2016.04.009
  • Hyodo, M., Murata, H., Yasufuku, N., & Fujii, T. (1991). Undrained cyclic shear strength and residual shear strain of saturated sand by cyclic triaxial tests. Soils and Foundations, 31(3), 60–76. doi:10.3208/sandf1972.31.3_60
  • Ishibashi, I., Sherif, M. A., & Cheng, W. L. (1982). The effects of soil parameters on pore-pressure-rise and liquefaction prediction. Soils and Foundations, 22(1), 39–48. doi:10.3208/sandf1972.22.39
  • Ishibashi, I., Sherif, M., & Tsuchiya, C. (1977). Pore-pressure rise mechanism and soil liquefaction. Soils and Foundations, 17(2), 17–27. doi:10.3208/sandf1972.17.2_17
  • Jardine, R., Chow, F., Overy, R., & Standing, J. (2005). ICP design methods for driven piles in sands and clays. London: Thomas Telford.
  • Jardine, R., & Standing, J. (2012). Field axial cyclic loading experiments on piles driven in sand. Soils and foundations, 52(4), 723–736. doi:10.1016/j.sandf.2012.07.012
  • Jardine, R., Standing, J., & Health and Safety Executive, London. (2000). Pile load testing performed for HSE cyclic loading study at dunkirk, France (Vol. 1). Offshore Technology Report-Health And Safety Executive Oto. Merseyside, England: Health and Safety Executive.
  • Jin, Y. F., Yin, Z. Y., Zhang, D. M., & Huang, H. W. (2015). Unified modelling of monotonic and cyclic behaviours for sand and clay. Acta Mechanica Solida Sinica, 28(2), 111–132. doi:10.1016/S0894-9166(15)30001-X
  • Konstadinou, M., & Georgiannou, V. (2014). Prediction of pore water pressure generation leading to liquefaction under torsional cyclic loading. Soils and Foundations, 54(5), 993–1005. doi:10.1016/j.sandf.2014.09.010
  • Krishnaswamy, N., & Thomas Isaac, N. (1995). Liquefaction analysis of saturated reinforced granular soils. Journal of Geotechnical Engineering, 121(9), 645–651. doi:10.1061/(ASCE)0733-9410(1995)121:9(645)
  • Lambe, T. W., & Whitman, R. V. (1969). Soil mechanics, series in soil engineering. Hoboken, NJ: Jhon Wiley & Sons.
  • Law, K. T., Cao, Y., & He, G. (1990). An energy approach for assessing seismic liquefaction potential. Canadian Geotechnical Journal, 27(3), 320–329. doi:10.1139/t90-043
  • Mitchell, R. J., & Dubin, B. I. (1986). Pore pressure generation and dissipation in dense sands under cyclic loading. Canadian Geotechnical Journal, 23(3), 393–398. doi:10.1139/t86-055
  • Mohtar, C. E., Bobet, A., Drnevich, V., Johnston, C., & Santagata, M. (2014). Pore pressure generation in sand with bentonite: From small strains to liquefaction. Géotechnique, 64(2), 108. doi:10.1680/geot.12.P.169
  • Nemat-Nasser, S., & Shokooh, A. (1979). A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing. Canadian Geotechnical Journal, 16(4), 659–678. doi:10.1139/t79-076
  • Polito, C. P., Green, R. A., & Lee, J. (2008). Pore pressure generation models for sands and silty soils subjected to cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(10), 1490–1500. doi:10.1061/(ASCE)1090-0241(2008)134:10(1490)
  • Porcino, D., Caridi, G., & Ghionna, V. N. (2008). Undrained monotonic and cyclic simple shear behaviour of carbonate sand. Géotechnique, 58(8), 635–644. doi:10.1680/geot.2007.00036
  • Porcino, D., Marcianò, V., & Granata, R. (2015). Cyclic liquefaction behaviour of a moderately cemented grouted sand under repeated loading. Soil Dynamics and Earthquake Engineering, 79, 36–46. doi:10.1016/j.soildyn.2015.08.006
  • Poulos, H. G. (1988). Cyclic stability diagram for axially loaded piles. Journal of Geotechnical Engineering, 114(8), 877–895. doi:10.1061/(ASCE)0733-9410(1988)114:8(877)
  • Pra-Ai, S. (2013). Behaviour of soil-structure interfaces subjected to a large number of cycles. (Application to piles. Ph. D. thesis). Université de Grenoble, France.
  • Pra-Ai, S., & Boulon, M. (2017). Soil–structure cyclic direct shear tests: A new interpretation of the direct shear experiment and its application to a series of cyclic tests. Acta Geotechnica, 12, 107–127. doi:10.1007/s11440-016-0456-6
  • Qian, J. G., Du, Z. B., & Yin, Z. Y. (2018). Cyclic degradation and non-coaxiality of soft clay subjected to pure rotation of principal stress directions. Acta Geotech, 13(4), 943–959. doi:10.1007/s11440-017-0567-8
  • Qian, J. G., Wang, Y. G., Yin, Z. Y., & Huang, M. S. (2016). Experimental identification of plastic shakedown behavior of saturated clay subjected to traffic loading with principal stress rotation. Engineering Geology, 214, 29–42. doi:10.1016/j.enggeo.2016.09.012
  • Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics & Foundations Division, 91(9), 1249–1274.
  • Sherif, M. A., Ishibashi, I., & Tsuchiya, C. (1978). Pore-pressure prediction during earthquake loadings. Soils and Foundations, 18(4), 19–30. doi:10.3208/sandf1972.18.4_19
  • Sivathayalan, S. (1994). Static, cyclic and post liquefaction simple shear response of sands. Canada: University of British Columbia.
  • Towhata, I., & Ishihara, K. (1985). Shear work and pore water pressure in undrained shear. Soils and Foundations, 25(3), 73–84. doi:10.3208/sandf1972.25.3_73
  • Tsuha, C. H. C., Foray, P., Jardine, R., Yang, Z., Silva, M., & Rimoy, S. (2012). Behaviour of displacement piles in sand under cyclic axial loading. Soils and Foundations, 52(3), 393–410. doi:10.1016/j.sandf.2012.05.002
  • Vaid, Y. P., & Chern, J. C. (1983). Effect of static shear on resistance to liquefaction. Soils and Foundations, 23(1), 47–60. doi:10.3208/sandf1972.23.47
  • Vaid, Y. P., & Negussey, D. (1984). Relative density of pluviated sand samples. Soils and Foundations, 24(2), 101–105. doi:10.3208/sandf1972.24.2_101
  • Vaid, Y. P., Stedman, J., & Sivathayalan, S. (2001). Confining stress and static shear effects in cyclic liquefaction. Canadian Geotechnical Journal, 38(3), 580–591. doi:10.1139/t00-120
  • Wang, J., Cai, Y. Q., & Yang, F. (2013). Effects of initial shear stress on cyclic behavior of saturated soft clay. Marine Georesources & Geotechnology, 31(1), 86–106. doi:10.1080/1064119X.2012.676153
  • Wang, J., Guo, L., Cai, Y. Q., Xu, C. J., & Gu, C. (2013) Strain and pore pressure development on soft marine clay in triaxial tests with a large number of cycles. Ocean Engineering, 74, 125–132. doi:10.1016/j.oceaneng.2013.10.005
  • Wang, J., Liu, F. Y., Wang, P., & Cai, Y. Q. (2016). Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests. Geotextiles and Geomembranes, 44(6), 854–861. doi:10.1016/j.geotexmem.2016.06.011
  • Wichtmann, T., & Triantafyllidis, T. (2016a). An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: Part I—tests with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739–761. doi:10.1007/s11440-015-0402-z
  • Wichtmann, T., & Triantafyllidis, T. (2016b). An experimental data base for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: Part II —tests with strain cycles and combined loading. Acta Geotechnica, 11(4), 763–774. doi:10.1007/s11440-015-0412-x
  • Yang, J., & Sze, H. (2011). Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Géotechnique, 61(1), 59–73. doi:10.1680/geot.9.P.019
  • Yang, Z., Jardine, R., Zhu, B., Foray, P., & Tsuha, C. (2010). Sand grain crushing and interface shearing during displacement pile installation in sand. Géotechnique, 60(6), 469–482. doi:10.1680/geot.2010.60.6.469
  • Yang, Z., & Pan, K. (2017). Flow deformation and cyclic resistance of saturated loose sand considering initial static shear effect. Soil Dynamics and Earthquake Engineering, 92(2017), 68–78. doi:10.1016/j.soildyn.2016.09.002
  • Yin, Z. Y., Chang, C. S., & Hicher, P. Y. (2010). Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. International Journal of Solids and Structures, 47(14–15), 1933–1951. doi:10.1016/j.ijsolstr.2010.03.028
  • Yin, Z. Y., Wu, Z. Y., & Hicher, P. Y. (2018). Modeling the monotonic and cyclic behavior of granular materials by an exponential constitutive function. Journal of Engineering Mechanics ASCE, 144(4), 04018014. doi:10.1061/(ASCE)EM.1943-7889.0001437
  • Yin, Z. Y., Xu, Q., & Chang, C. S. (2013). Modeling cyclic behavior of clay by micromechanical approach. ASCE Journal of Engineering Mechanics, 139(9), 1305–1309. doi:10.1061/(ASCE)EM.1943-7889.0000516
  • Yoshimine, M., Ishihara, K., & Vargas, W. (1998). Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils and Foundations, 38(3), 179–188. doi:10.3208/sandf.38.3_179
  • Yoshimine, M., Robertson, P., & Wride, C. (1999). Undrained shear strength of clean sands to trigger flow liquefaction. Canadian Geotechnical Journal, 36(5), 891–906. doi:10.1139/t99-047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.