154
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Use of metakaolin or coal gangue as a partial substitution of cement in mechanical performance of PC mortars

, ORCID Icon, , , &
Pages 502-515 | Received 24 Oct 2017, Accepted 01 Oct 2018, Published online: 26 Feb 2019

References

  • ASTM C 307 . (2012). Standard test method for tensile strength of chemical-resistant mortar, grouts, and monolithic surfacings. West Conshohocken, PA: ASTM International.
  • Alaa, M. , R. , & Sayieda, R. , Z. (2011). The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials, 25, 3098–3107.
  • Arreola, S. (2016). Comportamiento físico-mecánico de morteros de cemento portland con sustituciones parciales de carbón mineral. 6th Euro-American congress on construction pathology, rehabilitation technology and heritage management (pp. 1021–1028). Burgos, Spain.
  • ASTM C 150. (2015). Standard specification for Portland cement. West Conshohocken, PA: ASTM.
  • ASTM C 618. (2003). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. In Annual book of ASTM standards. West Conshohocken, PA: ASTM.
  • ASTM C 91. (2005). Specification for masonry cement. West Conshohocken, PA: ASTM.
  • ASTM C109/C109M. (2016). Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens). West Conshohocken, PA: ASTM.
  • ASTM C1437 . (2015). Standard test method for flow of hydraulic cement mortar. West Conshohocken, PA: ASTM International.
  • ASTM C1583/C1583M . (2013). Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull-off method). West Conshohocken, PA: ASTM International.
  • ASTM C187 . (2016). Standard test method for amount of water required for normal consistency of hydraulic cement paste. West Conshohocken, PA: ASTM.
  • ASTM C311/C311M. (2016). Standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland-cement concrete. West Conshohocken, PA: ASTM International.
  • ASTM C348 . (2014). Standard test method for flexural strength of hydraulic-cement mortars. PA West Conshohocken, PA: ASTM International.
  • ASTM C88 (2013). Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. West Conshohocken, PA: ASTM.
  • Badogiannis, E. , Kakali, G. , Dimopoulou, G. , Chaniotakis, E. , & Tsivilis, S. (2005). Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins. Cement and Concrete Composites, 27(2), 197–203.
  • Badogiannis, E. , Tsivilis, S. , Papadakis, V.G. , & Chaniotakis, E. (2002). The effects of MK on concrete properties. Proceeding of Dundee conference. Dundee, UK.
  • Benhelal, E. , Zahedi, G. , Shamsaei, E. , & Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of Cleaner Production, 51, 142–161.
  • Bich, C. , Ambroise, J. , & Péra, J. (2009). Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science, 44, 194–200. doi:10.1016/j.clay.2009.01.014
  • Bin, F. (2000). Study on coal–refuse Activity. Environmental Science of Shanghai, 19(7), 349–351.
  • Brooks, J. J. & Johari, M. A. M. (2001). Effect of metakaolin on creep and shrinkage of concrete. Cement and Concrete Composites, 23(6), 495–502.
  • Caldarone, M. , & Gruber, K. (1995). Proceedings of 5th International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete. V.M. Malhotra (ed.), Vol. II, ACI SP 153, (p. 815). Detroit, MI: American Concrete Institute.
  • Cassagnabère, F. , Diederich, P. , Mouret, M. , Escadeillas, G. , & Lachemi, M. (2013). Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state. Cement & Concrete Composites, 37, 95–107.
  • Courard, L. , Darimont, A. , Schouterden, M. , Ferauche, F. , Willem, X. , & Degeimbre, R. (2003). Durability of mortar modified with metakaolin. Cement and Concrete Research, 33(9), 1473–1479.
  • Curcio, F. , DeAngelis, B. , & Pagliolico, S. (1998). Metakaolin as a pozzolanic microfiller for high-performance mortars. Cement and Concrete Research, 28(6), 803–809.
  • Dinghai, D. , & Wenlong, C. (1999). Environmental effect of coal gangue stack area. China Mining Magazine, 8(6), 87–91.
  • Dong, Z. , Xia, J. , Fan, C. , & Cao, J. (2015). Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar. Construction and Building Materials, 100, 63–69.
  • Ferreira, R. , Liu, G. , Nilsson, L. , & Gjørv, O. E. (2004). Blast-furnace slag cements for concrete durability in marine environment. CONSEC 04, fourth international conference on concrete under severe conditions: environment and loading (pp. 109–116). Seoul, Korea.
  • Gruber, K. , & Sarkar, S. (1996). Exploring the pozzolanic activity of high reactivity metakaolin. World Cement, 27(2), 78–90.
  • Hao, B. , & Wang, C. (2009). The ecological management and comprehensive utilization of coal gangue (pp. 284–288). Marrickville: Aussino Acad Publ House.
  • Li, M. , Zhu, X. , Mukherjee, A. , Huang, M. , & Achal, V. (2017). Biomineralization in metakaolin modified cement mortar to improve its strength with lowered cement content. Journal of Hazardous Materials, 329, 178–184.
  • Liu, H. , & Liu, Z. (2010). Recycling utilization patterns of coal mining waste in China. Resources, Conservation and Recycling, 54, 1331–1340.
  • Malhotra, M. , & Mehta, P. K. (2005). High performance, high volume fly ash concrete. In Supplementary cementing materials for sustainable. Ottawa.
  • Mehta, K. (2008). Roadmap to a sustainable concrete construction industry. Construction Specifier, 61, 48–57.
  • Mexican-Standard-NMX-C-414-ONNCCE. (2014). Building Industry, Hydraulic Cement, Specifications and Test Methods.
  • Na, Z. , Henghu, S. , Xiaoming, L. , & Jixiu, Z. (2009). Early-age characteristics of red mud–coal gangue cementitious material. Journal of Hazardous Materials, 167(1-3), 927–932.
  • Ouyang, D. , Xu, W. , Lo, T. Y. , & Sham, J. F. C. (2011). Increasing mortar strength with the use of activated kaolin by-products from paper industry. Construction and Building Materials, 25(4), 1537–1545.
  • Paiva, H. , Velosa, A. , Cachim, P. , & Ferreira, V. M. (2012). Effect of metakaolin dispersion on the fresh and hardened state properties of concrete. Cement and Concrete Research, 42(4), 607–612.
  • Polder, R. (2001). Test methods on site measurement of resistivity of concrete—a RILEM TC, 154 technical recommendation. Construction and Building Materials, 15, 125–131.
  • Poon, C.-S. , Lam, L. , Kou, S. C. , Wong, Y.-L. , & Wong, R. (2001). Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cement and Concrete Research, 31(9), 1301–1306.
  • Protocol, K. (1990). The United Nations framework convention on climate change. Kyoto Japan.
  • Sang-Sook, P. , & Hwa-Young, K. (2008). Characterization of fly ash-pastes synthesized at different activator conditions. Korean Journal of Chemical Engineering, 25(1), 78–83.
  • Shvarzman, A. , Kovler, K. , Grader, G. S. , & Shter, G. E. (2003). The effect of dehydroxylation/amorphization degree on pozzolanic, activity of kaolinite. Cement and Concrete Research, 33(3), 405–416.
  • Subaer, H. , Abdul , Nurhayati, I. , Andi, E. , & Januarti, J. (2016). The influence of Si:Al and Na:Al on the physical and microstructure characters of geopolymers based on metakaolin. Materials Science Forum, 841, 170–177.
  • Wang, J. , Wu, X-L. , Wang, J-X. , Liu, C-Z. , Lai, Y-M. , Hong, Z-K. , & Zheng, J-P. (2012). Hydrothermal synthesis and characterization of alkali-activated slag–fly ash–metakaolin cementitious materials. Microporous Mesoporous Mater, 155, 186–191.
  • Duan X. , Xia J. , & Yang J. (2014). Influence of coal gangue fine aggregate on microstructure of cement mortar and its action mechanism. Journal of Building Materials, 17(4), 700–705.
  • Yu, L. , Feng, Y. , & Yan, W. (2012). The current situation of comprehensive utilization of coal gangue in China. Natural Resources and Sustainable Development II Pts 1–4, 524–527, 915–918.
  • Zhang, M. , & Malhotra, V. (1995). Characteristics of a thermally activated aluminosilicate pozzolanic material and its use in concrete. Cement and Concrete Research, 25(8), 1713–1725.
  • Zhiqiang, Y. (1993). The experimental research on activation of coal gangue. Building Materials, 9, 45–46.
  • Zhiqiang, Y. , & Zhang, R. (1994). Characteristic of coal gangue and its usage. Journal of Shandong Min. Institution, 13(1), 67–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.