334
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of the equivalent Mohr–Coulomb parameters using the Hoek–Brown criterion and its application in slope analysis

, &
Pages 599-617 | Received 13 Jul 2017, Accepted 16 Oct 2018, Published online: 28 Jan 2019

References

  • Benz, T., Schwab, R., Kauther, R. A., & Vermeer, P. A. (2008). A Hoek–Brown criterion with intrinsic material strength factorization. International Journal of Rock Mechanics and Mining Sciences, 45(2), 210–222. doi:10.1016/j.ijrmms.2007.05.003.
  • Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Géotechnique, 5(1), 7–17. doi:10.1680/geot.1955.5.1.7.
  • Brown, E. T. (2008). Estimating the mechanical properties of rock masses. In Y. P. Editor, J. C. Editor, A. D. Editor, & R. J. Editor (Eds.), Proceedings of the 1st Southern Hemisphere International Rock Mechanics Symposium (pp. 3–21). Perth: Australian Centre for Geomechanics.
  • Carranza-Torres, C. (2004). Some comments on the application of the Hoek–Brown failure criterion for intact rock and rock masses to the solution of tunnel and slope excavation problems. In G. B. Editor & M. B. Editor (Eds.), MIR 2004-X Conference on Rock and Engineering Mechanics (pp. 285–326). Torino, Italy: Pàtron Editore – Bologna.
  • Clausen, J., & Damkilde, L. (2008). An exact implementation of the Hoek–Brown criterion for elasto-plastic finite element calculations. International Journal of Rock Mechanics and Mining Sciences, 45(6), 831–847. doi:10.1016/j.ijrmms.2007.10.004.
  • Dawson, E., Motamed, F., Nesarajah, S., & Roth, W. (2000). Geotechnical stability analysis by strength reduction. Slope Stability, 49(6), 99–113. doi:10.1061/40512(289)8.
  • Edelbro, C., Sjöberg, J., & Nordlund, E. (2007). A quantitative comparison of strength criteria for hard rock masses. Tunnelling and Underground Space Technology, 22(1), 57–68. doi:10.1016/j.tust.2006.02.003.
  • Fu, W., & Liao, Y. (2010). Non-linear shear strength reduction technique in slope stability calculation. Computers and Geotechnics, 37(3), 288–298. doi:10.1016/j.compgeo.2009.11.002.
  • Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE, 106 (GT9), 1013–1035. doi:10.1016/0148-9062(81)90766-x.
  • Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek–Brown failure criterion - 2002 edition. Proceedings of NARMS-TAC conference (pp. 267–273). Toronto: University of Toronto.
  • Jiang, H. (2017). Three-dimensional failure criteria for rocks based on the Hoek–Brown criterion and a general Lode dependence. International Journal of Geomechanics, 17(8), 62–72. doi:10.1061/(ASCE)GM.1943-5622.0000900.
  • Jimenez, R., Serrano, A., & Olalla, C. (2008). Linearization of the Hoek and Brown rock failure criterion for tunnelling in elasto-plastic rock masses. International Journal of Rock Mechanics and Mining Sciences, 45(7), 1153–1163. doi:10.1016/j.ijrmms.2007.12.003.
  • Lee, Y. K., & Pietruszczak, S. (2017). Analytical representation of Mohr failure envelope approximating the generalized Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 100, 90–99. doi:10.1016/j.ijrmms.2017.10.021.
  • Li, A. J., Merifield, R. S., & Lyamin, A. V. (2008). Stability charts for rock slopes based on the Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 45(5), 689–700. doi:10.1016/j.ijrmms.2007.08.010.
  • Merifield, R. S., Lyamin, A. V., & Sloan, S. W. (2006). Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek–Brown criterion. International Journal of Rock Mechanics and Mining Sciences, 43(6), 920–937. doi:10.1016/j.ijrmms.2006.02.001.
  • Priest, S. D. (2005). Determination of shear strength and three-dimensional yield strength for the Hoek–Brown criterion. Rock Mechanics and Rock Engineering, 38(4), 299–327. doi:10.1007/s00603-005-0056-5.
  • Rahimi, R., & Nygaard, R. (2015). Comparison of rock failure criteria in predicting borehole shear failure. International Journal of Rock Mechanics and Mining Sciences, 79, 29–40. doi:10.1016/j.ijrmms.2015.08.006.
  • Sofianos, A. I. (2003). Tunnelling Mohr–Coulomb strength parameters for rock masses satisfying the generalized Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 40(3), 435–400. doi:10.1016/s1365-1609(03)00017-0.
  • Sofianos, A. I., & Nomikos, P. P. (2006). Equivalent Mohr–Coulomb and generalized Hoek–Brown strength parameters for supported axisymmetric tunnels in plastic or brittle rock. International Journal of Rock Mechanics and Mining Sciences, 43(5), 683–704. doi:10.1016/j.ijrmms.2005.11.006.
  • Yang, X. L., Li, L., & Yin, J. H. (2004a). Stability analysis of rock slopes with a modified Hoek–Brown failure criterion. International Journal for Numerical and Analytical Methods in Geomechanics, 28(2), 181–190. doi:10.1002/nag.330.
  • Yang, X. L., Li, L., & Yin, J. H. (2004b). Seismic and static stability analysis of rock slopes by a kinematical approach. Géotechnique, 54(8), 543–549. doi:10.1680/geot.54.8.543.52014.
  • Yang, X. L., & Yin, J. H. (2005). Upper bound solution for ultimate bearing capacity with a modified Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 42(4), 550–560. doi:10.1016/j.ijrmms.2005.03.002.
  • Yang, X. L., & Yin, J. H. (2006). Linear Mohr–Coulomb strength parameters from the non-linear Hoek–Brown rock masses. International Journal of Non-Linear Mechanics, 41(8), 1000–1005. doi:10.1016/j.ijnonlinmec.2006.08.003.
  • Yang, X. L., & Zou, J. F. (2006). Stability factors for rock slopes subjected to pore water pressure based on the Hoek–Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences, 43(7), 1146–1152. doi:10.1016/j.ijrmms.2006.03.010.
  • Zeng, P., Salvador, S., & Rafael, J. (2016). Reliability analysis of circular tunnel face stability obeying Hoek–Brown failure criterion considering different distribution types and correlation structures. Journal of Computing in Civil Engineering, 30(1), 2390–2398. doi:10.1061/(ASCE)CP.1943-5487.0000464.
  • Zheng, H., Sun, G. H., & Liu, D. F. (2009). A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique. Computers and Geotechnics, 36(1–2), 1–5. doi:10.1016/j.compgeo.2008.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.