207
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Potential use of activated Algerian natural pozzolan powder as a cement replacement material

, , &
Pages 967-987 | Received 02 Jul 2017, Accepted 05 Dec 2018, Published online: 21 Jan 2019

References

  • Abdullah, A., Jaafar, M. S., Taufiq-Yap, Y. H., Alhozaimy, A., Al-Negheimish, A., & Noorzaei, J. (2012). The effect of various chemical activators on pozzolanic reactivity: A review. Sciences Research Essays, 7, 719–729.
  • Akaninyene, A., & Olusola, K. O. (2012). Compressive strength and static modulus of elasticity of periwinkle shell ash blended cement concrete. International Journal of Sustainable Construction Engineering and Technology, 3, 45–55.
  • Alexander, K. M. (1960). Reactivity of ultra fine powders produced from siliceous rocks. Journal of American Concrete Institute, 57, 557–569.
  • Allahverdi, A., & Ghorbani, J. (2006). Chemical activation and set acceleration of lime-natural pozzolan. Cement Ceramics – Silikáty, 50, 193–199.
  • Allahverdi, A., Mehrpour, K., & Najafi Kani, E. (2008). Investigating the possibility of utilizing pumice-type natural pozzonal in production of geopolymer. Cement Ceramics – Silikáty, 52, 16–23.
  • Allahverdi, A., Najafi Kani, E., & Provis, J. L. (2012). Efflorescence control in geopolymer binders based on natural pozzolan. Cement and Concrete Composites, 34, 25–33. doi:10.1016/j.cemconcomp.2011.07.007
  • Ángel Sanjuán, M., Argiz, C., Gálvez, J. C., & Moragues, A. (2015). Effect of silica fume fineness on the improvement of Portland cement strength performance. Construction and Building Materials, 96, 55–64. doi:10.1016/j.conbuildmat.2015.07.092
  • Angulo-Ramírez, D. E., Gutiérrez, R. M., & Puertas, F. (2017). Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Construction and Building Materials, 140, 119–128. doi:10.1016/j.conbuildmat.2017.02.092
  • ASTM C595 (2003). Standard specification for blended hydraulic cements. West Conshohocken, PA: American Society for Testing and Materials (ASTM) International.
  • ASTM C 618. (2003). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA: American Society for Testing and Materials.
  • ASTM C311-92 (2005). Standard methods of sampling and testing fly ash or natural pozzolans for use as a mineral admixture in Portland cement concrete. West Conshohocken, PA: American Society for Testing and Materials.
  • Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (1999). Alkali activation of Australian slag cements. Cement and Concrete Research, 29(1), 113–120. doi:10.1016/S0008-8846(98)00170-7
  • Bondar, D., Lynsdale, C. J., Milestone, N. B., Hassani, N., & Ramezanianpour, A. A. (2011). Effect of adding mineral additives to alkali-activated natural pozzolan paste. Construction and Building Materials, 25(6), 2906–2910. doi:10.1016/j.conbuildmat.2010.12.031
  • Bougara, A., Kadri, E. H., & Ezziane, K. (2010). Efficiency of granulated blast furnace slag replacement of cement according to the equivalent binder concept. Cement and Concrete Composites, 32, 226–231.
  • Buchwald, A., Hilbig, H., & Kaps, C. (2007). Alkali-activated metakaolin-slag blends – performance and structure in dependence of their composition. Journal of Materials Science, 42(9), 3024–3032. doi:10.1007/s10853-006-0525-6
  • Cáchová, M., Kotátková, J., Konáková, D., Vejmelková, E., Bartonková, E., & Cerný, R. (2016). Hygric properties of lime-cement plasters with the addition of a pozzolana. International. Conference on Ecology and New Building Materials and Products, ICEBMP, 151, 127–132. doi:10.1016/j.proeng.2016.07.403
  • Cao, Z., Cao, Y., Dong, H., Zhang, J., & Sun, C. (2016). Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. International Journal of Mineral Processing, 146, 23–28. doi:10.1016/j.minpro.2015.11.008
  • Chaib, O., Mouli, M., Hanifi, M., Hamadache, M., Benosman, S., & Dif, S. (2015). Etude de l’influence de la pouzzolane naturelle sur la résistance mécanique des mortiers à base de ciments composés. 33èmes Rencontres de l’AUGC, ISABTP/UPPA, Anglet.
  • Cihangir, F., Ercikdi, B., Kesimal, A., Deveci, H., & Erdemir, F. (2015). Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties. Minerals Engineering, 83, 117–127. doi:10.1016/j.mineng.2015.08.022
  • Damidot, D., Lothenbach, B., Herfort, D., & Glasser, F. P. (2011). Thermodynamics and cement science. Cement and Concrete Research, 41(7), 679–695. doi:10.1016/j.cemconres.2011.03.018
  • Elinwa, A. U. (2006). Experimental characterization of Portland cement-calcined soldier-ant mound clay cement mortar and concrete. Construction and Building Materials, 20(9), 754–760. doi:10.1016/j.conbuildmat.2005.01.053
  • Erdogan, S. T., & SagliK, A. U. (2013). Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cement and Concrete Research, 38, 29–39
  • Escalante-Garcia, J. I., Castro-Borges, P., Gorokhovsky, A., & Rodriguez-Varela, F. J. (2014). Portland cement-blast furnace slag mortars activated using waterglass: Effect of temperature and alkali concentration. Construction and Building Materials, 66, 323–328. doi:10.1016/j.conbuildmat.2014.04.120
  • Fabbri, B., Gualtieri, S., & Leonardi, C. (2013). Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Applied Clay Sciences, 73, 2–10. doi:10.1016/j.clay.2012.09.019
  • Fahim-Huseien, G., Mirza, J., Ismail, M., & Warid-Hussin, M. (2016). Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash. Construction and Building Materials, 125, 1229–1240. doi:10.1016/j.conbuildmat.2016.08.153
  • Fernández-Jiménez, A., Flores, E., Maltseva, O., García-Lodeiro, I., & Palomo, Á. (2013). Hybrid alkaline cements. Part III. Durability and industrial application. Romanian Journal of Materials, 43, 195–200.
  • Fischer, I., Pichler, B., Lach, E., Terner, C., Barraud, E., & Britz, F. (2014). Compressive strength of cement paste as a function of loading rate: Experiments and engineering mechanics analysis. Cement and Concrete Research, 58, 186–200. doi:10.1016/j.cemconres.2014.01.013
  • García-Lodeiro, I., Maltseva, O., Palomo, Á., & Fernández-Jiménez, A. (2012). Hybrid alkaline cement. Part I: fundamentals. Romanian Journal of Materials, 42, 330–335.
  • Ghiasvand, E., Ramezanianpour, A. A., & Ramezanianpour, A. M. (2014). Effect of grinding method and particle size distribution on the properties of Portland-pozzolan cement. Construction and Building Materials, 53, 547–554. doi:10.1016/j.conbuildmat.2013.11.072
  • Haider, M. O., Hamid, R., & Taha, M. R. (2014). Influence of thermally activated alum sludge ash on the engineering properties of multiple-blended binders concretes. Construction and Building Materials, 61, 216–229. doi:10.1016/j.conbuildmat.2014.03.014
  • Hamidi, M., Kacimi, L., Cyr, M., & Clastres, P. (2013). Evaluation and improvement of pozzolanic activity of andesite for its use in eco-efficient cement. Construction and Building Materials, 47, 1268–1277. doi:10.1016/j.conbuildmat.2013.06.013
  • He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37, 108–118. doi:10.1016/j.cemconcomp.2012.11.010
  • Helmuth, R. (1987). Fly ash in cement and concrete. Illinois: Portland Cement Association.
  • Ibrahim, M., Azmi, M., Johari, M., Rahman, M., K., & Maslehuddin, M. (2017). Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete. Construction and Building Materials, 147, 648–660. doi:10.1016/j.conbuildmat.2017.04.163
  • Ilić, B., Radonjanin, V., Malešev, M., Zdujić, M., & Mitrović, A. (2016). Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Applied Clay Science, 123, 173–181. doi:10.1016/j.clay.2016.01.029
  • Kabay, N., Mansur-Tufekci, M., Kizilkanat, A. B., & Oktay, D. (2015). Properties of concrete with pumice powder and fly ash as cement replacement materials. Construction and Building Materials, 85, 1–8. doi:10.1016/j.conbuildmat.2015.03.026
  • Kaid, N., Cyr, M., & Khelafi, H. (2015). Caracterisation of an Algerian natural pozzolan for its use in eco-efficient cement. International Journal of Civil Engineering, 13,444–454.
  • Kaminskas, R., Cesnauskas, V., & Kubiliute, R. (2015). Influence of different artificial additives on Portland cement hydration and hardening. Construction and Building Materials, 95, 537–544. doi:10.1016/j.conbuildmat.2015.07.113
  • Koteng, D. O., & Chen, C. T. (2015). Strength development of lime–pozzolana pastes with silica fume and fly Ash. Construction and Building Materials, 84, 294–300. doi:10.1016/j.conbuildmat.2015.03.052
  • Kotwica, Ł., Pichór, W., & Nocuń-Wczelik, W. (2016). Study of pozzolanic action of ground waste expanded perlite by means of thermal methods. Journal of Thermal Analysis and Calorimetry, 123(1), 607–613. doi:10.1007/s10973-015-4910-8
  • Labbaci, Y., Abdelaziz, Y., Mekkaoui, A., Alouani, A., & Labbaci, B. (2017). The use of the volcanic powders as supplementary cementitious materials for environmental-friendly durable concrete. Construction and Building Materials, 133, 468–481. doi:10.1016/j.conbuildmat.2016.12.088
  • Mechebek, S., Ayed, K., Mouli, M., & Benosman, S. (2010). Activation chimio-thermique de la pouzzolane naturelle de Béni-Saf. 7ème Séminaire Sur Les Technologies du Béton, Sheraton Alger –Algérie (in French).
  • Mendelovici, E. (1997). Comparative study of the effects of thermal and mechanical treatments on the structures of clay minerals. Journal of Thermal Analysis, 49(3), 1385–1397. doi:10.1007/BF01983697
  • Mobili, A., Belli, A., Giosuè, T., Bellezze, T., & Tittarelli, F. (2016). Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class. Cement and Concrete Research, 88, 198–210. doi:10.1016/j.cemconres.2016.07.004
  • Myers, R. J., Bernal, S. A., San Nicolas, R., & Provis, J. L. (2013). Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross linked substituted tobermorite model. Langmuir, 29(17), 5294–5306. doi:10.1021/la4000473
  • NA (2005). Cement: Composition, specifications and conformity criteria for common cements. Algerian Standard Algeria, 442, 11.
  • Najafi Kani, E., & Allahverdi, A. (2009). Effects of curing time and temperature on strength development of inorganic polymeric binders based on natural pozzolan. Journal of Materials Science, 44(12), 3088–3097. doi:10.1007/s10853-009-3411-1
  • Omar, A. (2015). Développement et validation d'un modèle aux éléments discrets de comportement du béton sous chargement dynamique (Thèse de Doctorat). Université de Grenoble, France, p. 153.
  • Oymael, S., & Durmus, A. (2006). Effects of sulphates on elastic modulus of concrete samples made from blends of cement with oil shale ash. Oil Shale, 21, 125–134.
  • Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Properties of tungsten mine waste geopolymeric binder. Construction and Building Materials, 22(6), 1201–1211. doi:10.1016/j.conbuildmat.2007.01.022
  • Palomo, A., Maltseva, O., Garcia Lodeiro, I., & Fernandez Jimenez, A. (2013). Hybrid alkaline cements. Part II: the clinker factor. Romanian Journal of Materials, 43, 74–80.
  • Phoo-Ngernkham, T., Sata, V., Hanjitsuwan, S., Ridtirud, C., Hatanaka, S., & Chindaprasirt, P. (2015). High calcium fly ash geopolymer mortar containing Portland cement for use as repair material. Construction and Building Materials, 98, 482–488. doi:10.1016/j.conbuildmat.2015.08.139
  • Poon, C. S., Lam, L., Kou, S. C., & Lin, Z. S. (1999). A study on the hydration rate of natural zeolite blended cement pastes. Construction and Building Materials, 13(8), 427–432. doi:10.1016/S0950-0618(99)00048-3
  • Provis, J. L. (2017). Alkali-activated materials. Cement and Concrete Research, 78, 9.
  • Provis, J. L., Palomo, A., & Shi, C. (2015). Advances in understanding alkali-activated materials. Cement and Concrete Research, 78, 110–125. doi:10.1016/j.cemconres.2015.04.013
  • Puertas, F., Palacios, M., Manzano, H., Dolado, J. S., Rico, A., & Rodríguez, J. (2011). A model for the C–A–S–H gel formed in alkali-activated slag cements. Journal of the European Ceramic Society, 31(12), 2043–2056. doi:10.1016/j.jeurceramsoc.2011.04.036
  • Radwan, M. M., Farag, L. M., Abo-El-Enein, S. A., & Abdel-Hamid, H. K. (2013). Alkali activation of blended cements containing oil shale ash. Construction and Building Materials, 40, 367–377. doi:10.1016/j.conbuildmat.2012.11.006
  • Ramezanianpour, A. A., Khani, M. M., & Ahmadibeni, G. (2009). The Effect of Rice Husk Ash on Mechanical Properties and Durability of Sustainable Concrete. International Journal of Civil Engineering, 2, 83–91.
  • Rodrıguez-Camacho, R. E., & Uribe-Afif, R. (2002). Importance of using the natural pozzolans on concrete durability. Cement and Concrete Research, 32, 1851–1858. doi:10.1016/S0008-8846(01)00714-1
  • Saraya, M. E. I. (2014). Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Construction and Building Materials, 72, 104–112. doi:10.1016/j.conbuildmat.2014.08.071
  • Shi, C., & Day, R. L. (1996). Selectivity of alkaline activators for the activation of slags. Cement, Concrete and Aggregates, 18, 8–14. doi:10.1520/CCA10306J
  • Shi, C., & Day, R. L. (2000a). Pozzolanic reaction in the presence of chemical activators. Part I - Reaction kinetics. Cement and Concrete Research, 30(1), 51–58. doi:10.1016/S0008-8846(99)00205-7
  • Shi, C., & Day, R. L. (2000b). Pozzolanic reaction in the presence of chemical activators Part II. Reaction Products and Mechanism. Cement and Concrete Research, 30(4), 607–613. doi:10.1016/S0008-8846(00)00214-3
  • Shvarzman, A., Kovler, K., Schamban, I., Grader, G. S., & Shter, G. E. (2002). Influence of chemical and phase composition of mineral admixtures on their pozzolanic activity. Advances in Cement Research, 14(1), 35–41. doi:10.1680/adcr.2002.14.1.35
  • Sindhunata, A., Provis, J. L., Lukey, G. C., Xu, H., & Van-Deventer, J. S. J. (2008). Structural evolution of fly ash based geopolymers in alkaline environments. Industrial Engineering Chemistry Research, 47, 2991–2999.
  • Škvára, F., & Buhuněk, J. (1999). Chemical activation of systems with latent hydraulic properties. Ceramics-Silikaty, 43, 111–116.
  • Thi Thuy, H. (2010). Evolution physico-chimique des liants bas pH hydratés Influence de la température et mécanisme de rétention des alcalins (Thèse de doctorat de l’). Université de Bourgogne, France, p. 268.
  • Wainwright, P. J., & Tolloczko, J. J. (1986). The Early and Later age properties of temperature OPC concrete. Second International Conference on the use of fly ash, silica fume, slag and natural Pozzolans in concrete, CANMET, 2, 1293–1321.
  • White, C. E., Daemen, L. L., Hartl, M., & Page, K. (2015). Intrinsic differences in atomic ordering of calcium (alumino) silicate hydrates in conventional and alkali-activated cements. Cement and Concrete Research, 67, 66–73. doi:10.1016/j.cemconres.2014.08.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.