401
Views
9
CrossRef citations to date
0
Altmetric
Note

Impact of glass fibre on hydromechanical behaviour of compacted sand–bentonite mixture for landfill application

&
Pages 1179-1200 | Received 08 Feb 2018, Accepted 14 Jan 2019, Published online: 16 Feb 2019

References

  • Abdi, M. R., Parsapajouh, A., & Arjomand, M. A. (2008). Effects of random fiber inclusion on consolidation, hydraulic conductivity, swelling, shrinkage limit and desiccation cracking of clays. International Journal of Civil Engineering, 6(4), 284–292.
  • Al Wahab, R. M., & El-Kedrah, M. A. (1995). Using fibers to reduce tension cracks and shrink/swell in a compacted clay. In Geoenvironment 2000: Characterization, containment, remediation, and performance in environmental geotechnics (Vol. 46, pp. 791–805). Reston, VA: ASCE.
  • Al-Akhras, N. M., Attom, M. F., Al-Akhras, K. M., & Malkawi, A. I. H. (2008). Influence of fibers on swelling properties of clayey soil. Geosynthetics International, 15(4), 304–309. doi:10.1680/gein.2008.15.4.304
  • Allan, M. L., & Kukacka, L. E. (1995). Permeability of microcracked fibre-reinforced containment barriers. Waste Management, 15(2), 171–177. doi:10.1016/0956-053X(95)00011-N
  • ASTM D4318 (2000). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. West Conshohocken, PA: ASTM International.
  • ASTM D792. (2013). Standard test methods for density and specific gravity (relative density) of plastics by displacement. West Conshohocken, PA: ASTM International.
  • ASTM C1609/C1609 M. (2012). Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading). West Conshohocken, PA: ASTM International.
  • ASTM D2256. (2015). Standard test method for tensile properties of yarns by the single-strand method. West Conshohocken, PA: ASTM International.
  • ASTM D2435. (1996). Standard test method for one-dimensional consolidation properties of soils. West Conshohoken, PA: ASTM International.
  • ASTM D422. (2002). Standard test method for particle-size analysis of soils. West Conshohoken, PA: ASTM International.
  • ASTM D4767. (2000). Standard test methods for consolidated undrained triaxial compression test for cohesive soils. West Conshohocken, PA: ASTM International.
  • ASTM D698. (2012). Standard test methods for laboratory compaction characteristics of soil using standard effort. West Conshohoken, PA: ASTM International.
  • Ateş, A. (2016). Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering, 96, 295–304. doi:10.1016/j.compositesb.2016.04.049
  • Bishop, A. W., & Henkel, D. J. (1962). The measurement of soil properties in the triaxial test (2nd ed.). London: Edward Arnold Ltd.
  • Benessalah, I., Arab, A., Villard, P., Sadek, M., & Kadri, A. (2016). Laboratory study on shear strength behaviour of reinforced sandy soil. Effect of glass-fibre content and other parameters. Arabian Journal for Science and Engineering, 41(4), 1343–1353. doi:10.1007/s13369-015-1912-6
  • Benson, C. H., & Othman, M. A. (1993). Hydraulic and mechanical characteristics of a compacted municipal solid waste compost. Waste Management & Research, 11(2), 127–142. doi:10.1177/0734242X9301100205
  • Budhu, M. (2008). Soil mechanics and foundations. New York, NY: John Wiley and Sons.
  • Babu, G. L. S., & Vasudevan, A. K. (2008). Strength and stiffness response of coir fiber-reinforced tropical soil. Journal of Materials in Civil Engineering, 20(9), 571–577. doi:10.1061/(ASCE)0899-1561(2008)20:9(571)
  • Babu, G. L. S. (2012). Final project report: Laboratory shear strength studies of soil admixed with plastic waste. Bangalore, India: Department of Civil Engineering, Indian Institute of Science.
  • Chen, Y., & Meehan, C. L. (2011). Undrained strength characteristics of compacted bentonite/sand mixtures. In Geo-Frontiers 2011: Advances in Geotechnical Engineering (pp. 2699–2708), Geotechnical Special Publication No. 211, Dallas, TX, March 13–16. Reston, VA: ASCE.
  • Consoli, N. C., Montardo, J. P., Donato, M., & Prietto, P. D. M. (2004). Effect of material properties on the behaviour of sand-cement-fibre composites. Ground Improvement, 8(2), 77–90. doi:10.1680/grim.2004.8.2.77
  • Consoli, N. C., Prietto, P. D., & Ulbrich, L. A. (1998). Influence of fiber and cement addition on behavior of sandy soil. Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1211–1214. doi:10.1061/(ASCE)1090-0241(1998)124:12(1211)
  • Consoli, N. C., Prietto, P. D. M., & Ulbrich, L. A. (1999). The behavior of a fiber-reinforced cemented soil. Ground Improvement, 3(1), 21–30. doi:10.1680/gi.1999.030103
  • Consoli, N. C., Festugato, L., & Heineck, K. S. (2009). Strain-hardening behaviour of fibre-reinforced sand in view of filament geometry. Geosynthetics International, 16(2), 109–115. doi:10.1680/gein.2009.16.2.109
  • Dutta, J., & Mishra, A. K. (2015). A study on the influence of inorganic salts on the behaviour of compacted bentonites. Applied Clay Science, 116, 85–92. doi:10.1016/j.clay.2015.08.018
  • Graham, J., Saadat, F., Gray, M. N., Dixon, D. A., & Zhang, Q. Y. (1989). Strength and volume change behaviour of a sand–bentonite mixture. Canadian Geotechnical Journal, 26(2), 292–305. doi:10.1139/t89-038
  • Gray, D. H., & Ohashi, H. (1983). Mechanics of fiber reinforcement in sand. Journal of Geotechnical Engineering, 109(3), 335–353. doi:10.1061/(ASCE)0733-9410(1983)109:3(335)
  • Harianto, T., Hayashi, S., Du, Y. J., & Suetsugu, D. (2008). Effects of fiber additives on the desiccation crack behavior of the compacted Akaboku soil as a material for landfill cover barrier. Water Air and Soil Pollution, 194(1–4), 141–149. doi:10.1007/s11270-008-9703-2
  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. Washington, DC: World Bank, Urban Development and Local Government Unit.
  • Hauser, V. L., Weand, B. L., & Gill, M. D. (2001). Natural covers for landfills and buried waste. Journal of Environmental Engineering, 127(9), 768–775. doi:10.1061/(ASCE)0733-9372(2001)127:9(768)
  • Kim, B., & Kim, Y. (2017). Strength characteristics of cemented sand–bentonite mixtures with fiber and metakaolin additions. Marine Georesources and Geotechnology, 35(3), 414–425. doi:10.1080/1064119X.2016.1190431
  • Kumar, S., & Yong, W. L. (2002). Effect of bentonite on compacted clay landfill barriers. Soil and Sediment Contamination, 11(1), 71–89. doi:10.1080/20025891106709
  • Lambe, T. W., & Whitman, R. V. (1979). Soil mechanics. New York, NY: John Wiley and Sons.
  • Maher, M. H., & Ho, Y. C. (1993). Behavior of fiber-reinforced cemented sand under static and cyclic loads. Geotechnical Testing Journal, 16(3), 330–338. doi:10.1520/GTJ10054J
  • Maher, M. H., & Ho, Y. C. (1994). Mechanical properties of kaolinite/fiber soil composite. Journal of Geotechnical Engineering, 120(8), 1381–1393. doi:10.1061/(ASCE)0733-9410(1994)120:8(1381)
  • Miller, C. J., & Rifai, S. (2004). Fiber reinforcement for waste containment soil liners. Journal of Environmental Engineering, 130(8), 891–895. doi:10.1061/(ASCE)0733-9372(2004)130:8(891)
  • Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior (3rd ed.). New York, NY: John Wiley and Sons.
  • Mollins, L. H., Stewart, D. I., & Cousens, T. W. (1999). The drained strength of bentonite enhanced sand. Geotechnique, 49(4), 523–528. doi:10.1680/geot.1999.49.4.523
  • Morris, P. H., Graham, J., & Williams, D. J. (1992). Cracking in drying soils. Canadian Geotechnical Journal, 29(2), 263–277. doi:10.1139/t92-030
  • Mujah, D., Ahmad, F., Hazarika, H., & Safari, A. (2013). Evaluation of the mechanical properties of recycled glass fibers-derived three dimensional geomaterial for ground improvement. Journal of Cleaner Production, 52, 495–503. doi:10.1016/j.jclepro.2013.03.035
  • Mukherjee, K., & Mishra, A. K. (2017a). The Impact of scrapped tyre chips on the mechanical properties of liner materials. Environmental Processes, 4(1), 219–233. doi:10.1007/s40710-017-0210-6
  • Mukherjee, K., & Mishra, A. K. (2017b). Performance enhancement of sand–bentonite mixture due to addition of fiber and geosynthetic clay liner. International Journal of Geotechnical Engineering, 11(2), 107–113. doi:10.1080/19386362.2016.1192235
  • Mukherjee, K., & Mishra, A. K. (2018). Hydraulic and mechanical characteristics of compacted sand–bentonite: tyre chips mix for its landfill application. Environment, Development and Sustainability, doi:10.1007/s10668-018-0094-2
  • Özkul, Z. H., & Baykal, G. (2007). Shear behaviour of compacted rubber fiber-clay composite in drained and undrained loading. Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 767–781. doi:10.1061/(ASCE)1090-0241(2007)133:7(767)
  • Plé, O., Lê, H., & Gotteland, P. (2009). A mechanical approach for fibre-reinforced clay in landfill caps cover application. European Journal of Environmental and Civil Engineering, 13(1), 53–69. doi:10.1080/19648189.2009.9693085
  • Plé, O., & Lê, T. N. H. (2012). Effect of polypropylene fiber-reinforcement on the mechanical behavior of silty clay. Geotextiles and Geomembranes, 32, 111–116. doi:10.1016/j.geotexmem.2011.11.004
  • Phanikumar, B. R., & Singla, R. (2016). Swell-consolidation characteristics of fibre-reinforced expansive soils. Soils and Foundations, 56(1), 138–143. doi:10.1016/j.sandf.2016.01.011
  • Patel, S. K., & Singh, B. (2017). Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states. Geotechnical and Geological Engineering, 35(4), 1767–1781. doi:10.1007/s10706-017-0207-y
  • Qian, X., Koerner, R. M., & Gray, D. H. (2002). Geotechnical aspects of landfill design and construction. Upper Saddle River, NJ: Prentice-Hall.
  • Quigley, R. M. (1993). Clay minerals against contaminant migration. Geotechnical News, North American Geotechnical Community, 11(4), 44–46.
  • Rayhani, M. H. T., Yanful, E. K., & Fakher, A. (2008). Physical modeling of desiccation cracking in plastic soils. Engineering Geology, 97(1-2), 25–31. doi:10.1016/j.enggeo.2007.11.003
  • Rodatz, W., & Oltmanns, W. (1997). Permeability and stress–strain behaviour of fibre-reinforced soils for landfill liner systems. In August, H., Holzlohner, U. and Meggyes, T. (Eds.) Advanced landfill liner systems (pp. 321–332). London: Thomas Telford Publishing.
  • Rowe, R. K., Quigley, R. M., & Booker, J. R. (1995). Clayey barrier systems for waste disposal facilities. London: Chapman & Hall.
  • Scalia, I. V., J., Benson, C. H., Albright, W. H., Smith, B. S., & Wang, X. (2017). Properties of barrier components in a composite cover after 14 years of service and differential settlement. Journal of Geotechnical and Geoenvironmental Engineering, 143(9), 04017055. doi:10.1061/(ASCE)GT.1943-5606.0001744)
  • Shafiee, A., Tavakoli, H. R., & Jafari, M. K. (2008). Undrained behavior of compacted sand-clay mixtures under monotonic loading paths. Journal of Applied Sciences, 8(18), 3108–3118. doi:10.3923/jas.2008.3108.3118
  • Tang, C. S., Shi, B., Cui, Y. J., Liu, C., & Gu, K. (2012). Desiccation cracking behavior of polypropylene fiber-reinforced clayey soil. Canadian Geotechnical Journal, 49(9), 1088–1101. doi:10.1139/t2012-067
  • Taylor, D. W. (1948). Fundamentals of soil mechanics. New York, NY: Wiley.
  • Terzaghi, K. (1943). Theoretical soil mechanics. New York, NY: John Wiley & Sons.
  • United States Environmental Protection Agency (USEPA). (1988). Design, construction and evaluation on of clay liners for waste management facilities. In Technical Resource Document. Cincinnati, OH: Hazardous Waste Engineering Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. EPA/530-SW- 86-007F, NTIS PB 86-184496.
  • Vejmelková, E., Konvalinka, P., Padevět, P., & Černý, R. (2010). Thermophysical and mechanical properties of fiber‐reinforced composite material subjected to high temperatures. Journal of Civil Engineering and Management, 16(3), 395–400. doi:10.3846/jcem.2010.45
  • Wan, A. W. L., Graham, J., & Gray, M. N. (1990). Influence of soil structure on the stress–strain behavior of sand–bentonite mixtures. Geotechnical Testing Journal, 13(3), 179–187. doi:10.1520/GTJ10156J

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.