361
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Influence of dilatancy on shear band characteristics of granular backfills

ORCID Icon, &
Pages 1201-1218 | Received 08 May 2018, Accepted 14 Jan 2019, Published online: 16 Feb 2019

References

  • Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 23(1), 261–304. doi:10.1146/annurev.fl.23.010191.001401
  • Alshibli, K. A., & Sture, S. (2000). Shear band formation in plane strain experiments of sand. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 495–503. doi:10.1061/(ASCE)1090-0241(2000)126:6(495)
  • Altunbas, A., Soltanbeigi, B., & Cinicioglu, O. (2017). Determination of active failure surface geometry for cohesionless backfills. Geomechanics and Engineering, 12(6), 983–1001. doi:10.12989/gae.2017.12.6.983
  • Bolton, M. D. (1986). The strength and dilatancy. Geeotechnique, 36(I), 65–78. doi:10.1680/geot.1986.36.1.65
  • Borja, R. I., Song, X., Rechenmacher, A. L., Abedi, S., & Wu, W. (2013). Shear band in sand with spatially varying density. Journal of the Mechanics and Physics of Solids, 61(1), 219–234. doi:10.1016/j.jmps.2012.07.008
  • Chakraborty, T., & Salgado, R. (2010). Dilatancy and shear strength of sand at low confining pressures. Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 527–532. doi:10.1061/(ASCE)GT.1943-5606.0000237
  • Cinicioglu, O., & Abadkon, A. (2015). Dilatancy and friction angles based on in situ soil conditions. Journal of Geotechnical and Geoenvironmental Engineering, 141(4), 06014019. doi:10.1061/(ASCE)GT.1943-5606.0001272
  • Coulomb, C. A. (1776). Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l'architecture. Memoires de mathematique et de physique. Presentes a l’Academie Royale des Sciences, Paris 7, pp., 343–382.
  • Darwin, G. H. (1883). On the horizontal thrust of a mass of sand. Minutes of the Proceedings of the Institution of Civil Engineers, 71(1883), 350–378. doi:10.1680/imotp.1883.21802
  • Desrues, J., & Hammad, W. (1989). Shear banding dependency on mean pressure level in sand. In E. Dembicki, et al. (Eds.), Proc. Int. Workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies, Gdansk, Poland.
  • Desrues, J., & Viggiani, G. (2004). Strain localization in sand: An overview of the experimental results obtained in Grenoble using stereophotogrammetry. International Journal for Numerical and Analytical Methods in Geomechanics, 28(4), 279–321. doi:10.1002/nag.338
  • Gang, M., Regueiro, R. A., Zhou, W., Wang, Q., & Liu, J. (2018). Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotechnica, 13(3), 601–618. doi:10.1007/s11440-017-0621-6
  • Gang, M., Zhou, W., Chang, X. L., Ng, T. T., & Yang, L. F. (2016). Formation of shear bands in crushable and irregularly shaped granular materials and the associated microstructural evolution. Powder Technology, 301, 118–130. doi:10.1016/j.powtec.2016.05.068
  • Hanna, A. (2001). Determination of plane-strain shear strength of sand from the results of triaxial tests. Canadian Geotechnical Journal, 38(6), 1231–1240. doi:10.1139/t01-064
  • Hazeghian, M., & Soroush, A. (2018). DEM simulations to study the effects of the ground surface geometry on dip-slip faulting through granular soils. European Journal of Environmental and Civil Engineering, 2018, 1–19. doi:10.1080/19648189.2018.1428225
  • Hutchinson, J. W., & Tvergaard, V. (1981). Shear band formation in plane strain. International Journal of Solids and Structures, 17(5), 451–470. doi:10.1016/0020-7683(81)90053-6
  • Lade, P. V. (2002). Instability, shear banding and failure in granular materials. I. Journal of Solids and Structures, 39(13-14), 3337–3357. doi:10.1016/S0020-7683(02)00157-9
  • Leśniewska, D., Niedostatkiewicz, M., & Tejchman, J. (2012). Experimental study on shear localisation in granular materials within combined strain and stress field. Strain, 48(5), 430–444. doi:10.1111/j.1475-1305.2012.00838.x
  • Muir Wood, D., & Lesniewska, D. (2011). Photoelastic and photographic study of a granular material. Géotechnique, 61(7), 605–611. doi:10.1680/geot.8.T.017
  • Niedostatkiewicz, M., Lesniewska, D., & Tejchman, J. (2011). Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry. Strain, 47(s2), 218–231. doi:10.1111/j.1475-1305.2010.00761.x
  • Nova, R. (2009). Failure in geomaterials. European Journal of Environmental and Civil Engineering, 13(7-8), 779–802. doi:10.1080/19648189.2009.9693156
  • Nübel, K. (2002). Experimental and numerical investigation of shear localization in granular material (Doctoral Dissertation). Institutes fur Bodenmechanik und Felsmechanik der Universitat Fridericiana in Karlsruhe.
  • Palmeira, E. M., & Milligan, G. W. E. (1989). Scale effects in direct shear tests on sand. In Proceedings of the 12th international conference on soil mechanics and foundation engineering (Vol. 1, pp. 739–742).
  • Pietrzak, M., & Leśniewska, D. (2012). Failure evolution in granular material retained by rigid wall in active mode. Studia Geotechnica et Mechanica, 34(4), 1–9. doi:10.2478/sgm041206
  • Rechenmacher, A. L. (2006). Grain-scale processes governing shear band initiation and evolution in sands. Journal of the Mechanics and Physics of Solids, 54(1), 22–45. doi:10.1016/j.jmps.2005.08.009
  • Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society A, 269(1339), 500–527.
  • Rowe, P. W. (1969). The relation between the shear strength of sands in triaxial compression and plane strain. Geotechnique. 19(1), 75–86. doi:10.1680/geot.1969.19.1.75
  • Schanz, T., & Vermeer, P. A. (1996). Angles of friction and dilatancy of sand. Geotechnique, 46(1), 145–152. doi:10.1680/geot.1996.46.1.145
  • Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S.-A., Kloss, C., Pirker, S., & Ooi, J. Y. (2018). DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technology, 329, 288–303. doi:10.1016/j.powtec.2018.01.082
  • Stanier, S. A., Blaber, J., Take, W. A., & White, D. J. (2016). Improved image-based deformation measurement for geotechnical applications. Canadian Geotechnical Journal, 53(5), 727–739. doi:10.1139/cgj-2015-0253
  • Take, W. A., Bolton, M. D., & White, D. J. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Géotechnique, 53(7), 619–631. doi:10.1680/geot.2003.53.7.619
  • Tatsuoka, F., Okahara, M., Tanaka, T., Tani, K., Morimoto, T., & Siddiquee, M. S. (1991). Progressive failure and particle size effect in bearing capacity of footing on sand. In Proceedings of the ASCE.Geotechnical Engineering Congress, 27(2), 788–802.
  • Tatsuoka, F., Siddiquee, M. S. A., Yoshida, T., Park, C. S., Kamegai, Y., Goto, S., & Kohata, Y. (1994). Testing methods and results of element tests and testing conditions of plane strain model bearing capacity tests using air-dried dense Silver Buzzard Sand. Internal Report of the University of Tokyo, 1–129.
  • Tatsuoka, F., Nakamura, S., Huang, C., & Tani, K. (1990). Strength anisotropy and shear band direction in plane strain tests of sand. Soils and Foundations, 30(1), 35–54. doi:10.3208/sandf1972.30.35
  • Tejchman, J. (1989). Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Publication Series of the Institute of Soil and Rock Mechanics, 117, 1–236.
  • Tejchman, J. (2004). FE-analysis of patterning of shear zones in granular bodies for earth pressure problems of a retaining wall. Archives of Hydroengineering and Environmental Mechanics, 51(4), 317–348.
  • Vardoulakis, I. (1980). Shear band inclination and shear modulus of sand in biaxial tests. International Journal for Numerical and Analytical Methods in Geomechanics, 4(2), 103–119. doi:10.1002/nag.1610040202
  • Vardoulakis, I., Goldscheider, M., & Gudehus, G. (1978). Formation of shear bands in sand bodies as a bifurcation problem. International Journal for Numerical and Analytical Methods in Geomechanics, 2(2), 99–128. doi:10.1002/nag.1610020203
  • Wu, P.-K., Matsushima, K., & Tatsuoka, F. (2007). Effects of specimen size and some other factors on the strength and deformation of granular soil in direct shear tests. Geotechnical Testing Journal, 31(1), 45–64.
  • Yoshida, T. (1994). Shear banding in sands observed in plane strain compression. In Proc. Symp. on Localization and Bifurcation Theory for Soils and Rocks, Balkema, 165–179.
  • Zhou, W., Yang, L., Ma, G., Xu, K., Lai, Z., & Chang, X. (2017). DEM modelling of shear bands in crushable and irregularly shaped granular materials. Granular Matter, 19(2), 25.
  • Zhu, H., Nguyen, H. N. G., Nicot, F., & Darve, F. (2016). On a common critical state in localized and diffuse failure modes. Journal of the Mechanics and Physics of Solids, 95, 112–131. doi:10.1016/j.jmps.2016.05.026
  • Zhuang, L., Nakata, Y., & Lee, I. M. (2013). Localized deformation in sands and glass beads subjected to plane strain compressions. Geomechanics and Engineering, 5(6), 499–517. doi:10.12989/gae.2013.5.6.499

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.