990
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Flat-joint model to reproduce the mechanical behaviour of intact rocks

ORCID Icon, &
Pages 1427-1448 | Received 06 Aug 2018, Accepted 03 Feb 2019, Published online: 31 Mar 2019

References

  • Abdoulaye Hama, N., Ouahbi, T., Taibi, S., Souli, H., Fleureau, J.-M., & Pantet, A. (2017). Relationships between the internal erosion parameters and the mechanical properties of granular materials. European Journal of Environmental and Civil Engineering, 1–13. doi:10.1080/19648189.2017.1347526
  • Akram, M. S., & Sharrock, G. B. (2010). Physical and numerical investigation of a cemented granular assembly of steel spheres. International Journal for Numerical and Analytical Methods in Geomechanics, 34(18), 1896–1934. doi:10.1002/nag.885
  • Akram, M. S., Sharrock, G. B., & Mitra, R. (2018). Investigating mechanics of conglomeratic rocks: influence of clast size distribution, scale and properties of clast and interparticle cement. Bulletin of Engineering Geology and the Environment. doi:10.1007/s10064-018-1274-x
  • Asadi, M., Rasouli, V., & Barla, G. (2012). A bonded particle model simulation of shear strength and asperity degradation for rough rock fractures. Rock Mechanics and Rock Engineering, 45(5), 649–675. doi:10.1007/s00603-012-0231-4
  • Bahaaddini, M. (2017). Effect of boundary condition on the shear behaviour of rock joints in the direct shear test. Rock Mechanics and Rock Engineering, 50(5), 1141–1155. doi:10.1007/s00603-016-1157-z
  • Bahaaddini, M., & Rahimi, M. (2018). Distinct element modelling of the mechanical behaviour of intact rocks using voronoi tessellation model. Int. Journal of Mining & Geo-Engineering, 52(1), 61–68. doi:10.22059/ijmge.2017.240741.594694
  • Bahaaddini, M., Hagan, P., Mitra, R., & Hebblewhite, B. K. (2013). Numerical investigation of asperity degradation in the direct shear test of rock joints. Paper presented at the Eurock 2013 Conference, Wroclaw, Poland.
  • Bahaaddini, M., Hagan, P. C., Mitra, R., & Hebblewhite, B. K. (2014). Scale effect on the shear behaviour of rock joints based on a numerical study. Engineering Geology, 181, 212–223. doi:10.1016/j.enggeo.2014.07.018
  • Bahaaddini, M., Hagan, P. C., Mitra, R., & Hebblewhite, B. K. (2016). Numerical study of the mechanical behaviour of non-persistent jointed rock masses. International Journal of Geomechanics, 16(1), 04015035–040150310. doi:10.1061/(ASCE)GM.1943-5622.0000510
  • Bahaaddini, M., Hagan, P. C., Mitra, R., & Khosravi, M. H. (2016). Experimental and numerical study of asperity degradation in the direct shear test. Engineering Geology, 204, 41–52. doi:10.1016/j.enggeo.2016.01.018
  • Bahaaddini, M., Sharrock, G., & Hebblewhite, B. K. (2013a). Numerical direct shear tests to model the shear behaviour of rock joints. Computers and Geotechnics, 51, 101–115. doi:10.1016/j.compgeo.2013.02.003
  • Bahaaddini, M., Sharrock, G., & Hebblewhite, B. K. (2013b). Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Computers and Geotechnics, 206–225, 49. doi:10.1016/j.compgeo.2012.10.012
  • Calvetti, F. (2008). Discrete modelling of granular materials and geotechnical problems. European Journal of Environmental and Civil Engineering, 12(7–8), 951–965. doi:10.1080/19648189.2008.9693055
  • Cho, N., Martin, C. D., & Sego, D. C. (2007). A clumped particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 44(7), 997–1010. doi:10.1016/j.ijrmms.2007.02.002
  • Cui, Z., Sheng, Q., Leng, X., & Ma, Y. (2017). Investigation of the long-term strength of Jinping marble rocks with experimental and numerical approaches. Bulletin of Engineering Geology and the Environment. doi:10.1007/s10064-017-1132-2
  • Cundall, P. A., & Hart, R. D. (1992). Numerical modeling of discontinua. Engineering Computations, 9(2), 101–113. doi:10.1108/eb023851
  • Deisman, N., Mas Ivars, D., Darcel, C., & Chalaturnyk, R. J. (2010). Empirical and numerical approaches for geomechanical characterization of coal seam reservoirs. International Journal of Coal Geology, 82(3-4), 204–212. doi:10.1016/j.coal.2009.11.003
  • Delenne, J. Y., Soulié, F., El Youssoufi, M. S., & Radjai, F. (2011). Compressive strength of an unsaturated granular material during cementation. Powder Technology, 208(2), 308–311. doi:10.1016/j.powtec.2010.08.021
  • Ding, X., & Zhang, L. (2011). Simulation of rock fracturing using particle flow modeling: phase I – model development and calibration. Paper presented at the 45th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA.
  • Ding, X., & Zhang, L. (2014). A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models. International Journal of Rock Mechanics and Mining Sciences, 69, 111–119. doi:10.1016/j.ijrmms.2014.03.008
  • Fakhimi, A. (2004). Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles. Engineering Geology, 74(1–2), 129–138. doi:10.1016/j.enggeo.2004.03.006
  • Gao, F., & Kang, H. (2017). Grain-based discrete-element modeling study on the effects of cementation on the mechanical behavior of low-porosity brittle rocks. International Journal of Geomechanics, 17(9), 04017061. doi:10.1061/(ASCE)GM.1943-5622.0000957
  • Gu, X., Li, W., Qian, J., & Xu, K. (2017). Discrete element modelling of the influence of inherent anisotropy on the shear behaviour of granular soils. European Journal of Environmental and Civil Engineering, 22, s1–s18. doi:10.1080/19648189.2017.1352030
  • Hoek, E., & Martin, C. D. (2014). Fracture initiation and propagation in intact rock – A review. Journal of Rock Mechanics and Geotechnical Engineering, 6(4), 287–300. doi:10.1016/j.jrmge.2014.06.001
  • Itasca Consulting Group Inc. (2008a). PFC2D manual, version 4.0. Minneapolis, Minnesota.
  • Itasca Consulting Group Inc. (2008b). PFC3D manual, version 4.0. Minneapolis, Minnesota.
  • Itasca Consulting Group Inc. (2017). PFC (particle flow code in 2 and 3 dimensions), version 5.0 User’s manual. Minneapolis, Minnesota.
  • Jiang, M., Liao, Y., Wang, H., & Sun, Y. (2018). Distinct element method analysis of jointed rock fragmentation induced by TBM cutting. European Journal of Environmental and Civil Engineering, 22(Sup1), s79–s98. doi:10.1080/19648189.2017.1385540
  • Lee, J. S. (2007). Time-dependent crack growth in brittle rocks and field applications to geologic hazards (PhD Thesis). University of Arizona, Arizona.
  • Li, K., Cheng, Y., & Fan, X. (2018). Roles of model size and particle size distribution on macro-mechanical properties of Lac du Bonnet granite using flat-joint model. Computers and Geotechnics, 103, 43–60. doi:10.1016/j.compgeo.2018.07.007
  • Lin, H., Wang, H., Fan, X., Cao, P., & Zhou, K. (2017). Particle size distribution effects on deformation properties of graded aggregate base under cyclic loading. European Journal of Environmental and Civil Engineering, 1–18. doi:10.1080/19648189.2016.1276480
  • Martin, C. D. (1993). The strength of massive Lac Du Bonnet granite around underground openings (PhD thesis). University of Manitoba, Winnipeg, Canada.
  • Mas Ivars, D., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., & Cundall, P. A. (2011). The synthetic rock mass approach for jointed rock mass modelling. International Journal of Rock Mechanics & Mining Sciences, 48(2), 219–244. doi:10.1016/j.ijrmms.2010.11.014
  • Mingjing, J., Fangyuan, Z., Fang, L., & Stefano, U. (2014). A bond contact model for methane hydrate‐bearing sediments with interparticle cementation. International Journal for Numerical and Analytical Methods in Geomechanics, 38(17), 1823–1854. doi:10.1002/nag.2283
  • Mingjing, J., Sui, Y. H., & Serge, L. (2007). A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method. International Journal for Numerical Methods in Engineering, 69(6), 1158–1193. doi:10.1002/nme.1804
  • Peng, J., Wong, L. N. Y., Liu, G., & Teh, C. I. (2018). Influence of initial micro-crack damage on strength and micro-cracking behavior of an intrusive crystalline rock. Bulletin of Engineering Geology and the Environment. doi:10.1007/s10064-018-1317-3
  • Peng, J., Wong, L. N. Y., Teh, C. I., & Li, Z. (2018). Modeling micro-cracking behavior of Bukit Timah granite using grain-based model. Rock Mechanics and Rock Engineering, 51(1), 135–154. doi:10.1007/s00603-017-1316-x
  • Potyondy, D. O. (2011). Parallel-bond refinements to match macroproperties of hard rock. Paper presented at the 2nd International FLAC/DEM Symposium, Melbourne.
  • Potyondy, D. O. (2012). A flat-jointed bonded-particle material for hard rock. Paper presented at the 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, USA.
  • Potyondy, D. O. (2015). The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions. Geosystem Engineering, 18(1), 1–28. doi:10.1080/12269328.2014.998346
  • Potyondy, D. O. (2017). Simulating perforation damage with a flat-jointed bonded-particle material. Paper presented at the 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA.
  • Potyondy, D. O., & Cundall, P. A. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 41(8), 1329–1364. doi:10.1016/j.ijrmms.2004.09.011
  • Schöpfer, M. P. J., Abe, S., Childs, C., & Walsh, J. J. (2009). The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling. International Journal of Rock Mechanics & Mining Sciences, 46(2), 250–261. doi:10.1016/j.ijrmms.2008.03.009
  • Sharrock, G. B., Akram, M. S., & Mitra, R. (2009). Application of synthetic rock mass modeling to estimate the strength of jointed sandstone. Paper presented at the 43rd U.S. Rock Mechanics Symposium & 4th U.S.-Canada Rock Mechanics Symposium, Asheville, North Carolina.
  • Szwedzicki, T. (2007). A hypothesis on modes of failure of rock samples tested in uniaxial compression. Rock Mechanics and Rock Engineering, 40(1), 97–104. doi:10.1007/s00603-006-0096-5
  • Vallejos, J. A., Salinas, J. M., Delonca, A., & Ivars, D. M. (2017). Calibration and verification of two bonded-particle models for simulation of intact rock behavior. International Journal of Geomechanics, 17(4), 06016030. doi:10.1061/(ASCE)GM.1943-5622.0000773
  • Wang, Y., & Tonon, F. (2009). Modeling Lac du Bonnet granite using a discrete element model. International Journal of Rock Mechanics and Mining Sciences, 46(7), 1124–1135. doi:10.1016/j.ijrmms.2009.05.008
  • Wu, S., & Xu, X. (2016). A study of three intrinsic problems of the classic discrete element method using flat-joint model. Rock Mechanics and Rock Engineering, 49(5), 1813–1830. doi:10.1007/s00603-015-0890-z
  • Yang, S.-Q., & Huang, Y.-H. (2018). Failure behaviour of rock-like materials containing two pre-existing unparallel flaws: An insight from particle flow modeling. European Journal of Environmental and Civil Engineering, 22(Sup1), S57–S78. doi:10.1080/19648189.2017.1366954

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.