225
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Probabilistic and sensitivity analysis of analytical models of corrosion onset for reinforced concrete structures

, ORCID Icon, , &
Pages 1665-1694 | Received 06 Jun 2017, Accepted 01 Mar 2019, Published online: 31 Mar 2019

References

  • Baroghel-Bouny, V., Thiéry, M., & Wang, X. (2011). Modelling of isothermal coupled moisture-ion transport in cementitious materials. Cement and Concrete Research, 41(8), 828–841. doi:10.1016/j.cemconres.2011.04.001
  • Bary, B., & Sellier, A. (2004). Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete. Cement Concrete Research, 34(10), 1859–1872. doi:10.1016/j.cemconres.2004.01.025
  • Bastidas-Arteaga, E. (2010). Contribution for sustainable management of reinforced concrete structures subjected to chloride penetration. PhD thesis, Université de Nantes, Université de Nantes.
  • Bastidas-Arteaga, E. (2018). Reliability of reinforced concrete structures subjected to corrosion-fatigue and climate change. International Journal of Concrete Structures and Materials, 12(1), 10.
  • Bastidas-Arteaga, E., Chateauneuf, A., Sanchez-Silva, M., Bressolette, P., & Schoefs, F. (2011). A comprehensive probabilistic model of chloride ingress in unsaturated concrete. Engineering Structures, 33(3), 720–730. doi:10.1016/j.engstruct.2010.11.008
  • Bastidas-Arteaga, E., & Schoefs, F. (2012). Stochastic improvement of inspection and maintenance of corroding reinforced concrete structures placed in unsaturated environments. Engineering Structures, 41, 50–62. doi:10.1016/j.engstruct.2012.03.011
  • Bastidas-Arteaga, E., & Schoefs, F. (2015). Sustainable maintenance and repair of RC coastal structures. Proceedings of the Institution of Civil Engineers - Maritime Engineering, 168(4), 162–173. doi:10.1680/jmaen.14.00018
  • Bentz, E., & Thomas, M. (2008). Life-365 Service life prediction model.
  • Bowley, A. (1901). Element of statistics. London: King and Son.
  • Buenfeld, N., & Wong, H. (2009). Determining the watercement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples. Cement and Concrete Research, 39, 957–965. doi:10.1016/j.cemconres.2009.06.013
  • CEB. (1997). New approach to durability design: An example for a carbonation induced corrosion. Bulletin 238, CEB.
  • Collepardi, M., Marcialis, A., & Turriziani, R. (1970). The kinetics of chloride ions penetration in concrete. Il Cemento, 67, 157–164.
  • Crank, J. (1975). The mathmatics of diffusion (2nd edn.). Oxford, UK: Clarendon Press.
  • Daniel, C. (1973). One-at-a-time plans. Journal of the American Statistical Association, 68(342), 353–360. doi:10.1080/01621459.1973.10482433
  • de Larrard, T., Bary, B., Adam, E., & Kloss, F. (2013). Influence of aggregate shapes on drying and carbonation phenomena in 3D concrete numerical samples. Computational Materials Science, 72, 1–14. doi:10.1016/j.commatsci.2013.01.039
  • de Larrard, T., Bastidas-Arteaga, E., Duprat, F., & Schoefs, F. (2014). Effects of climate variations and global warming on the durability of RC structures subjected to carbonation. Civil Engineering and Environmental Systems, 31(2), 153–164. doi:10.1080/10286608.2014.913033
  • Deby, F. (2008). Approche probabiliste de la durabilité des bétons en environnement marin. Thèse de génie civil, Université de Toulouse III-Paul Sabatier, Université de Toulouse III-Paul Sabatier.
  • EuroLightCon. (1999). Document BE96-3942/R3.
  • European Standard. (2004). EN 206-1/A1 (April). ISSN 0335-3931.
  • Frederiksen, J., Mejlbro, L., & Nilsson, L.-O. (2008). Fick’s 2nd law-complete solutions for chloride ingress into concrete. Report no., Lund Institute of Technology, Lund University-Division of Buildings Materials.
  • Friedmann, H., Amiri, O., & Aït-Mokhtar, A. (2012). Modelling of edl effect on chloride migration in cement-based materials. Magazine of Concrete Research, 64(10), 909–917. doi:10.1680/macr.11.00122
  • GranDubé. (2007). Grandeurs associées la durabilité du béton. Report no., Association Française du Génie Civil.
  • Hyvert, N. (2009). Application de l’approche probabiliste de la durabilité des produits préfabriqués en béton. Phd thesis, Université de Toulouse III-Paul Sabatier, Université de Toulouse III-Paul Sabatier.
  • Isgor, O. B., & Razaqpur, A. G. (2004). Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cement and Concrete Composites, 26(1), 57–73. doi:10.1016/S0958-9465(02)00125-7
  • JSCE. (2007). Proposed specification of durability design for concrete structures. Report No. 15, Japan Society of Civil Engineers.
  • Lemaire, M. (2009). Products of reliability analysis. In: Structural reliability. New York: ISTE Ltd and Wiley.
  • LERM, ed. (2000). Prediction of long-term durability of Vasco de Gama Bridge in Lisbon, Vol. 11, Barcelona, Spain: CANMET/ACI International conference.
  • Li, C. (2003). Life cycle modeling of corrosion affected concrete structures initiation. Journal of Materials in Civil Engineering, 15(6), 594–601.
  • Li, L., & Page, C. (2000). Finite element modelling of chloride removal from concrete by an electrochemical method. Corrosion Science, 42(12), 2145–2165. doi:10.1016/S0010-938X(00)00044-5
  • Maage, M., Poulsen, E., & Carlsen, J. (1995). Service life model for concrete structures exposed to marine environment initiation period. Report No. 2.4, LIGHTCON Report, Trondheim, Norway.
  • Maage, P., & Molloy, B. A. (1995). Practical non steady state chloride transport as a part of a model for predicting the initiation period. In Chloride penetration into concrete (Vol. 2, pp. 398–406). Paris: RILEM.
  • Mai-Nhu, J. (2013). Corrosion des armatures du béton: couplage carbonatation/chlorures en présence de cycles hydriques. Ph.D. thesis, Université Toulouse 3, Université Toulouse 3.
  • Mangat, P., & Molloy, B. (1994). Predicting of long term chloride concentration in concrete. Materials and Structures, 27(6), 338–346. doi:10.1007/BF02473426
  • Marchand, J. (2001). Modeling the behaviour of unsaturated cement systems exposed to aggressive chemical environments. Materials and Structures, 34(4), 195–200. doi:10.1007/BF02480588
  • Mejlbro, L. (1996). The complete solution of fick’s second law of diffusion with time dependent diffusion coefficient and surface concentration, durability of concrete in saline environment. Cementa AB, 127–158.
  • Miragliotta, R. (2000). Modélisation des processus physico-chimiques de la carbonatation des bétons préfabriqués - prise en comptes des effets de paroi. Ph.D. thesis, Université de la Rochelle, Université de la Rochelle.
  • Nguyen, P.-T., Bastidas-Arteaga, E., Amiri, O., & El Soueidy, C.-P. (2017). An efficient chloride ingress model for long-term lifetime assessment of reinforced concrete structures under realistic climate and exposure conditions. International Journal of Concrete Structures and Materials, 11(2), 199–213. doi:10.1007/s40069-017-0185-8
  • Nilsson, L. (2001). Prediction models for chloride ingress and corrosion initiation in concrete structures. Nordic Mini Seminar - Fib TD 5.5 Meeting, Goteborg.
  • Nilsson, L., & Carcasses, M. (2004). Models for chloride ingress into concrete - A critical analysis. Report no., EU-Project G6RD-CT-2002-00855,ChlorTest.
  • L.-O. Nilsson, ed. (1993). On a model of chloride ingress into concrete having time dependant diffusion coefficient, Vol. P-93:1 of Chloride Penetration into Concrete, Gteborg. Nordic Mini Seminar, Poulsen, E.
  • Nilsson, L.-O., Sandberg, P., Poulsen, E., Tng, L., Andersen, A., & Frederiksen, J. (1997). A system for estimation of chloride ingress into concrete, theoretical background. Report no., HETEK.
  • NTBuild443. (1995). Accelerated chloride penetration in hardened concrete. Nordtest.
  • NTBuild492. (1999). Concrete, mortar and cement based repair materials: chloride migration coefficient from non steady state migration experiments. Nordtest.
  • Papadakis, V., Vayenas, C., & Fardis, M. (1991). Fundamental modelling and experimental investigation of concrete carbonation. ACI Materials Journal, 4(88), 363–373.
  • Petre-Lazar, I. (2001). évaluation du comportement en service des ouvrages en béton armé soumis à la corrosion des aciers. Ph.D. thesis, Université Laval, Quebec.
  • Project BE95-1347, Final report (2000). DuraCrete Brite Euram III, eu edition.
  • Rakotovao Ravahatra, N., De Larrard, T., Duprat, F., Bastidas-Arteaga, E., & Schoefs, F. (2019). A cost-benefit methodology for selecting analytical reinforced concrete corrosion onset models. Advances in Civil Engineering(Under review).
  • Rakotovao Ravahatra, N., Schoefs, F., Duprat, F., de Larrard, T., & Bastidas-Arteaga, E. (2017). Assessing the capability of analytical carbonation models to propagate uncertainties and spatial variability of reinforced concrete structures. Frontiers in Built Environment: Bridge Engineering, 3(1), 1–9.
  • Saetta, A. V., Schrefler, B. A., & Vitaliani, R. V. (1995). 2-d model for carbonation and moisture/heat flow in porous materials. Cement and Concrete Research, 25(8), 1703–1712. doi:10.1016/0008-8846(95)00166-2
  • Sandberg, P. (1995). Critical evaluation of factors affecting chloride initiated reinforcement corrosion into concrete. Report no., Lund institute of technologie, Buildings Materials.
  • Schoefs, F. (2008). Sensitivity approach for modelling the environmental loading of marine structures through a matrix response surface. Reliability Engineering and System Safety, 93(7), 1004–1017. doi:10.1016/j.ress.2007.05.006
  • Sleiman, H., Amiri, O., & Aït-Mokhtar, A. (2009). Chloride transport in unsaturated cement-based materials: Modeling and simulation in case of a tidal zone. European Journal of Environmental and Civil Engineering, 13(4), 489–499. doi:10.1080/19648189.2009.9693125
  • Stanish, K., & Thomas, M. (2003). The use of bulk diffusion tests to establish tim-dependent concrete chloride diffusion coefficients. Cement and Concrete Research, 33(1), 55–62. doi:10.1016/S0008-8846(02)00925-0
  • Steffens, A., Dinkler, D., & Ahrens, H. (2002). Modeling carbonation for corrosion risk prediction of concrete structures. Cement and Concrete Research, 32(6), 935–941. doi:10.1016/S0008-8846(02)00728-7
  • R. Swany, H. Hamada, T. Fukute, S. Tanikawa, and J. Laiw, eds. (1995). Chloride penetration into concrete incorporating mineral admixtures or protected with surface coating material under chloride environments, Saporo, Japan. CONSEC 95, E and FN, Spon and London, UK.
  • Takewaka, K., & Mastumoto, S. (1998). Quality and cover thickness of concrete based on the estimation of chloride penetration in marine environments American Concrete Institute SP, 17(109), 381–400.
  • Talukdar, S., Banthia, N., & Grace, J. (2012). Carbonation in concrete infrastructure in the context of global climate change: Part 1, experimental results and model development. Cement and Concrete Composites, 34(8), 924–930. doi:10.1016/j.cemconcomp.2012.04.011
  • Tang, L., & Gulikers, J. (2007). On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete. Cement and Concrete Research, 37, 589–595. doi:10.1016/j.cemconres.2007.01.006
  • Tang, L., & Nilsson, L.-O. (1992). Chloride diffusivity in high strenght concrete at different ages. Nordic Concrete Research, 11, 162–171.
  • Tesfamariam, S., Bastidas-Arteaga, E., & Lounis, Z. (2018). Seismic retrofit screening of existing highway bridges with consideration of chloride-induced deterioration: A Bayesian belief network model. Frontiers in Built Environment, 4, 1–11.
  • Thiery, M. (2005). Modélisation de la carbonatation atmosphérique des matériaux cimentaires - prise en compte des effets cinétiques et des modifications microstructurales et hydriques. Ph.D. thesis, Ecole nationale des ponts et chaussées, Ecole nationale des ponts et chaussées.
  • Uji, K., Matsuoka, Y., & Maruya, T. (1990). Formulation of an equation for surface chloride content of concrete due to permeation of chloride. London: Elsevier Science, 26877.
  • Winston Revie, R., & Herbert, H.U. (2008). Corrosion and corrosion control-an introduction to corrosion science and engineering (4th edn). Hoboken, NJ: Wiley.
  • Yajun, L., & Xianming, S. (2012). Stochastic modeling of service life of concrete structures in chloride-laden environments. Journal of Materials in Civil Engineering, 24(4), 381–390
  • Ying-Yu, L., & Qui-Dong, W. (1987). The mechanism of carbonation of mortars and the dependence of carbonation on pore structure. ACI-SP 100, Concrete Durability, 1915–1943.
  • Zhou, Y., Gencturk, B., Willam, K., & Attar, A. (2015). Carbonation-induced and chloride-induced corrosion in reinforced concrete structures. Journal of Materials in Civil Engineering, 27(9), 04014245.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.