337
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Blast furnace slag-based geopolymer mortars cured at different conditions: modeling and optimization of compressive strength

Pages 1949-1961 | Received 06 Aug 2018, Accepted 18 Mar 2019, Published online: 16 Apr 2019

References

  • Aydın, S. y., & Baradan, B. (2014). Effect of activator type and content on properties of alkali-activated slag mortars. Composites Part B: Engineering, 57, 166–172. doi:https://doi.org/10.1016/j.compositesb.2013.10.001
  • Bashir, I., Sood, H., & Kapoor, K. (2017). Geopolymer concrete an ecofriendly construction material. International Journal of Latest Research in Engineering and Computing, 5, 10–12.
  • Davidovits, J. (1991). Geopolymers – Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. doi:https://doi.org/10.1007/BF01912193
  • Davidovits, J. (2015). Geopolymer chemistry and applications (4th ed.). San Quintin, France: Institut Géopolymère.
  • Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design, 62, 32–39. doi:https://doi.org/10.1016/j.matdes.2014.05.001
  • Deventer, J. S. J., Provis, J. L., Duxson, P., & Brice, D. G. (2010). Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste and Biomass Valorization, 1, 145–155. doi:https://doi.org/10.1007/s12649-010-9015-9
  • Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surface A: Physicochemical and Engineering Aspects, 269(1–3), 47–58. doi:https://doi.org/10.1016/j.colsurfa.2005.06.060
  • Escalante-García, J. I., Fuentes, A. F., Gorokhovsky, A., Fraire-Luna, P. E., & Mendoza-Suarez, G. (2003). Hydration products and reactivity of blast-furnace slag activated by various alkalis. Journal of the American Ceramic Society, 86(12), 2148–2153. doi:https://doi.org/10.1111/j.1151-2916.2003.tb03623.x
  • Fernández-Jiménez, A., García-Lodeiro, I. y., & Palomo, A. (2006). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42, 3055–3065. doi:https://doi.org/10.1007/s10853-006-0584-8
  • Fernández-Jiménez, A., Puertas, F., Sobrados, I., & Sanz, J. (2003). Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator. Journal of the American Ceramic Society, 86(8), 1389–1394. doi:https://doi.org/10.1111/j.1151-2916.2003.tb03481.x
  • Flavio, A. R., & Joekes, I. (2010). Cement industry: Sustainability, challenges and perspectives. Environmental Chemistry Letters, 9, 151–166. doi:https://doi.org/10.1007/s10311-010-0302-2
  • Frayyeh, Q., & Swaif, A. (2018). Mechanical properties of fly ash geopolymer mortar reinforced with carbon fibers. In The 3rd international conference on buildings, construction and environmental engineering, BCEE3-2017, MATEC Web Conf. (p. 162).
  • García-Lodeiro, I., Palomo, A. y., & Fernández-Jiménez, A. (2007). Alkali–aggregate reaction in activated fly ash systems. Cement and Concrete Research, 37(2), 175–183. doi:https://doi.org/10.1016/j.cemconres.2006.11.002
  • Hameed, A. M., Rawdhan, R. R., & Al-Mishhadani, S. A. (2017). Effect of various factors on the manufacturing of geopolymer mortar. Archives des Sciences, 1, 111.
  • Hendrik, G. V. O., & Amy, C. P. (2003). Cement manufacture and the environment part II: Environmental challenges and opportunities. Journal of Industrial Ecology, 7, 93–126.
  • Malkawi, A. B., Nuruddin, M. F., Fauzi, A., Almattarneh, H., & Mohammed, B. S. (2016). Effects of alkaline solution on properties of the HCFA geopolymer mortars. Procedia Engineering, 148, 710–717. doi:https://doi.org/10.1016/j.proeng.2016.06.581
  • Mejía, J. M., Mejía de Gutiérrez, R., & Puertas, F. (2013). Ceniza de cascarilla de arroz como fuente de sílice en sistemas cementicios de ceniza volante y escoria activados alcalinamente. Materiales de Construcción, 63(311), 361–375. doi:https://doi.org/10.3989/mc.2013.04712
  • Montgomery, D. C. (1991). Design and analysis of experiments (3rd ed.). New York: Wiley.
  • Palankar, N., Shankar, A. U. R., & Mithun, B. M. (2015). Studies on eco-friendly concrete incorporating industrial waste as aggregates. International Journal of Sustainable Built Environment, 4(2), 378–390. doi:https://doi.org/10.1016/j.ijsbe.2015.05.002
  • Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395. doi:https://doi.org/10.1016/j.conbuildmat.2014.12.065
  • Raymond, H. M., Douglas, C. M., & Christine, M. A.-C. (2016). Response surface methodology: Process and product optimization using designed experiments (4th ed.). New York: John Wiley & Sons, Inc.
  • Rodríguez, E. D., Bernal, S. A., Provis, J. L., Paya, J., Monzo, J. M., & Borrachero, M. V. (2013). Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 35(1), 1–11. doi:https://doi.org/10.1016/j.cemconcomp.2012.08.025
  • Shi, C., & Fernández-Jiménez, A. (2006). Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. Journal of Hazardous Materials, 137(3), 1656–1663. doi:https://doi.org/10.1016/j.jhazmat.2006.05.008
  • Shi, C., Krivenko, P. y., & Roy, D. (2006). Alkali-activated cements and concretes. London/New York: Taylor and Francis.
  • Shinde, B. H., & Kadam, K. N. (2015). Properties of fly ash based geopolymer mortar. International Journal of Engineering Research & Technology, 4, 971–974.
  • TanNguyen, K., AnhLe, T., Lee, J., Lee, D., & Lee, K. (1917). Investigation on properties of geopolymer mortar using preheated materials and thermogenetic admixtures. Construction and Building Materials, 130, 146–155.
  • Torres-Carrasco, M., & Puertas, F. (2017). Alkaline activation of different aluminosilicates as an alternative to Portland cement: Alkali activated cements or geopolymers. Revista ingenieria de construccion, 32(2).
  • Vora, P. R., & Dave, U. V. (2013). Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210–219. doi:https://doi.org/10.1016/j.proeng.2013.01.030
  • Wardhono, A. (2018). The effect of sodium hydroxide molarity on strength development of non-cement class C fly ash geopolymer mortar. Journal of Physics: Conference Series, 947(1).
  • Wazien, A. Z. W., Abdullah, M. M. A., Abd Razak, R., Rozainy, M. Z. M. R., & Tahir, M. F. M. (2016). Strength and density of geopolymer mortar cured at ambient temperature for use as repair material. IOP Conference Series: Materials Science and Engineering, 133(1).
  • Zejak, R., Nikoli, I., Blei, D., Radmilovi, V., & Radmilovi, V. (2013). Mechanical and microstructural properties of the fly-ash-based geopolymer paste and mortar. Materials and Technology, 47, 535–540.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.