387
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Pore pressure cohesive zone modelling of complex hydraulic fracture propagation in a permeable medium

, , , &
Pages 1733-1749 | Received 16 Oct 2018, Accepted 20 Mar 2019, Published online: 11 Apr 2019

References

  • Abé, H., Keer, L. M., & Mura, T. (1976). Growth rate of a penny-shaped crack in hydraulic fracturing of rocks, 2. Journal of Geophysical Research, 81(35), 6292–6298. doi: 10.1029/JB081i035p06292
  • Barenblatt, G. I. (1962). The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, 7(C), 55–129. doi:10.1016/S0065-2156(08)70121-2
  • Benzeggagh, M. L., & Kenane, M. (1996). Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56(4), 439–449. doi: 10.1016/0266-3538(96)00005-X
  • Blanton, T. L. (1986). Propagation of hydraulically and dynamically induced fractures in naturally fractured reservoirs. In SPE Unconventional Gas Technology Symposium. Society of Petroleum Engineers. doi: 10.2523/15261-MS
  • Camanho, P., & Davila, C. G. (2002). Mixed-mode decohesion finite elements in for the simulation composite of delamination materials. NASA, TM-2002-21, 1–37. doi: 10.1177/002199803034505
  • Carrier, B., & Granet, S. (2012). Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Engineering Fracture Mechanics, 79, 312–328. doi: 10.1016/j.engfracmech.2011.11.012
  • Chen, Z. (2012). Finite element modelling of viscosity-dominated hydraulic fractures. Journal of Petroleum Science and Engineering, 88–89, 136–144. doi: 10.1016/j.petrol.2011.12.021
  • Chen, Z., Bunger, A. P., Zhang, X., & Jeffrey, R. G. (2009). Cohesive zone finite element-based modeling of hydraulic fractures. Acta Mechanica Solida Sinica, 22(5), 443–452. doi: 10.1016/S0894-9166(09)60295-0
  • Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics, 4(1), 35–45. doi: 10.1061/(ASCE)1532-3641(2004)4:1(35)
  • Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104. doi: 10.1016/0022-5096(60)90013-2
  • Fu, P., Johnson, S. M., & Carrigan, C. R. (2013). An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. International Journal for Numerical and Analytical Methods in Geomechanics, 37(14), 2278–2300. doi: 10.1002/nag.2135
  • Geertsma, J., & De Klerk, F. (1969). A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21(12), 1571–1581. doi: 10.2118/2458-PA
  • Gonzalez, M., Taleghani, A. D., & Olson, J. E. (2015). A cohesive model for modeling hydraulic fractures in naturally fractured. SPE Hydraulic Fracturing Technology Conference, doi: 10.2118/173384-MS
  • Guo, J., Zhao, X., Zhu, H., Zhang, X., & Pan, R. (2015). Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method. Journal of Natural Gas Science and Engineering, 25, 180–188. doi: 10.1016/j.jngse.2015.05.008
  • Mitchell, S. L., Kuske, R., & Peirce, A. P. (2007). An asymptotic framework for the analysis of hydraulic fractures: The impermeable case. Journal of Applied Mechanics, 74(2), 365. doi: 10.1115/1.2200653
  • Mohammadnejad, T., & Khoei, A. R. (2013a). An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design, 73, 77–95. doi: 10.1016/j.finel.2013.05.005
  • Mohammadnejad, T., & Khoei, A. R. (2013b). Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 37(10), 1247–1279. doi: 10.1002/nag.2079
  • Munjiza, A. (2004). The combined finite-discrete element method. John Wiley & Sons. doi: 10.1002/0470020180
  • Munjiza, A., Owen, D. R. J., & Bicanic, N. (1995). A combined finite‐discrete element method in transient dynamics of fracturing solids. Engineering Computations, 12(2), 145–174. doi: 10.1108/02644409510799532
  • Nagel, N. B., Sanchez-Nagel, M. A., Zhang, F., Garcia, X., & Lee, B. (2013). Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock Mechanics and Rock Engineering, 46(3), 581–609. doi: 10.1007/s00603-013-0391-x
  • Nasehi, M. J., & Mortazavi, A. (2013). Effects of in-situ stress regime and intact rock strength parameters on the hydraulic fracturing. Journal of Petroleum Science and Engineering, 108, 211–221. doi: 10.1016/j.petrol.2013.04.001
  • Nordgren, R. P. (1972). Propagation of a vertical hydraulic fracture. Society of Petroleum Engineers Journal, 12(04), 306–314. doi: 10.2118/3009-PA
  • Peng, S., Zhang, Z., Mou, J., Zhao, B., Liu, Z., & Wang, J. (2019). Fully coupled hydraulic fracture simulation using the improved element partition method. International Journal for Numerical and Analytical Methods in Geomechanics, 43(1), 441–460. doi: 10.1002/nag.2870
  • Perkins, T. K., & Kern, L. R. (1961). Widths of hydraulic fractures. Journal of Petroleum Technology, 13(09), 937–949. doi: 10.2118/89-PA
  • Rahman, M. M., & Rahman, S. S. (2013). Studies of hydraulic fracture-propagation behavior in presence of natural fractures: Fully coupled fractured-reservoir modeling in poroelastic environments. International Journal of Geomechanics, 13(6), 809–826. doi: 10.1061/(ASCE)GM.1943-5622.0000274
  • Remij, E. W., Remmers, J. J. C., Huyghe, J. M., & Smeulders, D. M. J. (2015). The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Computer Methods in Applied Mechanics and Engineering, 286, 293–312. doi: 10.1016/j.cma.2014.12.025
  • Rice, J. R. (1980). The mechanics of earthquake rupture. In A. M. Dziewonski& E. Boschi (Eds.), Physics of the Earth’s Interior, pp. 555–649. Amsterdam: North‐Holland.
  • Sarris, E., & Papanastasiou, P. (2011). The influence of the cohesive process zone in hydraulic fracturing modelling. International Journal of Fracture, 167(1), 33–45. doi: 10.1007/s10704-010-9515-4
  • Sarris, E., & Papanastasiou, P. (2012). Modeling of hydraulic fracturing in a poroelastic cohesive formation. International Journal of Geomechanics, 12(2), 160–167. doi: 10.1061/(ASCE)GM.1943-5622.0000121
  • Sarris, E., & Papanastasiou, P. (2013). Numerical modeling of fluid-driven fractures in cohesive poroelastoplastic continuum. International Journal for Numerical and Analytical Methods in Geomechanics, 37(12), 1822–1846. doi: 10.1002/nag.2111
  • Sarris, E., & Papanastasiou, P. (2015). The influence of pumping parameters in fluid-driven fractures in weak porous formations. International Journal for Numerical and Analytical Methods in Geomechanics, 39(6), 635–654. doi: 10.1002/nag.2330
  • Schrefler, B. A., Secchi, S., & Simoni, L. (2006). On adaptive refinement techniques in multi-field problems including cohesive fracture. Computer Methods in Applied Mechanics and Engineering, 195(4–6), 444–461. doi: 10.1016/j.cma.2004.10.014
  • Secchi, S., & Schrefler, B. A. (2012). A method for 3-D hydraulic fracturing simulation. International Journal of Fracture, 178(1–2), 245–258. doi: 10.1007/s10704-012-9742-y
  • Turon, A., Camanho, P. P., Costa, J., & Renart, J. (2010). Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Composite Structures, 92(8), 1857–1864. doi: 10.1016/j.compstruct.2010.01.012
  • Yan, C., Zheng, H., Sun, G., & Ge, X. (2016). Combined finite-discrete element method for simulation of hydraulic fracturing. Rock Mechanics and Rock Engineering, 49(4), 1389–1410. doi: 10.1007/s00603-015-0816-9
  • Yao, Y. (2012). Linear elastic and cohesive fracture analysis to model hydraulic fracture in brittle and ductile rocks. Rock Mechanics and Rock Engineering, 45(3), 375–387. doi: 10.1007/s00603-011-0211-0
  • Yao, Y., Liu, L., & Keer, L. M. (2015). Pore pressure cohesive zone modeling of hydraulic fracture in quasi-brittle rocks. Mechanics of Materials, 83, 17–29. doi: 10.1016/j.mechmat.2014.12.010
  • Zhang, X., & Jeffrey, R. G. (2014). Role of overpressurized fluid and fluid-driven fractures in forming fracture networks. Journal of Geochemical Exploration, 144(PA), 194–207. doi: 10.1016/j.gexplo.2014.03.021
  • Zhang, X., Jeffrey, R. G., Bunger, A. P., & Thiercelin, M. (2011). Initiation and growth of a hydraulic fracture from a circular well bore. International Journal of Rock Mechanics and Mining Sciences, 48(6), 984–995. doi: 10.1016/j.ijrmms.2011.06.005
  • Zhang, X., Jeffrey, R. G., & Thiercelin, M. (2009). Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. Journal of Geophysical Research: Solid Earth, 114(12), 1-16. doi: 10.1029/2009JB006548

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.