258
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A methodology for estimation of site-specific nonlinear dynamic soil behaviour using vertical downhole arrays

ORCID Icon &
Pages 1810-1832 | Received 09 Mar 2017, Accepted 29 Mar 2019, Published online: 19 Apr 2019

References

  • Abdel-Ghaffar, A. M., & Scott, R. F. (1979). Shear moduli and damping factors of earth dam. Journal of the Geotechnical Engineering Division, ASCE, 105, 1405–1426.
  • Ada, M. (2013). Estimation of dynamic soil properties using system identification techniques (MSc. thesis). Istanbul Technical University, Istanbul, Turkey.
  • Assimaki, D., & Li, W. (2012). Site and ground motion dependent nonlinear effects in seismological model predictions. Soil Dynamics and Earthquake Engineering, 32, 143–151. doi: 10.1016/j.soildyn.2011.06.013
  • Baise, L. G. (2000). Investigations in site response from ground motions observations in vertical arrays (PhD thesis). Engineering-Civil and Environmental Engineering Department, University of California, Berkeley, CA.
  • Baise, L. G., Glaser, S. D., & Sugano, T. (2001). Consistency of dynamic site response at Port Island. Earthquake Engineering & Structural Dynamics, 30, 803–818. doi: 10.1002/eqe.38
  • Benz, T. (2006). Small-strain stiffness of soils and its numerical consequences (PhD thesis). Institute of Geotechnical Engineering, University of Stuttgart, Stuttgart, Germany.
  • Center for Engineering Strong Motion Center/ (2016). Retrieved from http://www.strongmotioncenter.org/
  • Chandra, J., Gueguen, P., Steidl, J. H., & Bonilla, L. F. (2015). In situ assessment of the G-γ curve for characterizing the nonlinear response of soil: Application to the Garner Valley Downhole Array and the Wildlife Liquefaction Array. Bulletin of the Seismological Society of America, 105, 993–1010. doi: 10.1785/0120140209
  • Chang, C. Y., Mok, C. M., & Tang, H. T. (1996). Inference of dynamic shear modulus from Lotung Downhole Data. Journal of Geotechnical Engineering, ASCE, 122, 657–665. doi: 10.1061/(ASCE)0733-9410(1996)122:8(657)
  • Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves (PhD thesis). University of Texas at Austin, Austin, TX.
  • Das, B. M., & Ramana, G. V. (2011). Principles of soil dynamics. Stamford: Cengage Learning.
  • Davis, R. O. (2000). Estimation of soil shear modulus softening during strong ground shaking using ground surface and downhole acceleration recordings. Earthquake Engineering & Structural Dynamics, 29, 359–376. doi: 10.1002/(SICI)1096-9845(200003)29:3<359::AID-EQE909>3.0.CO;2-M
  • Davis, R. O., & Berrill, J. B. (1998). Rational approximation of stress and strain based on downhole acceleration measurements. International Journal for Numerical and Analytical Methods in Geomechanics, 22, 603–619. doi: 10.1002/(SICI)1096-9853(199808)22:8<603::AID-NAG936>3.3.CO;2-Z
  • Duncan, J. M., & Chang, C. Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 96, 1629–1653.
  • Elgamal, A.-W., Zeghal, M., & Parra, E. (1996). Liquefaction of reclaimed island in Kobe, Japan. Journal of Geotechnical Engineering, 122, 39–49. doi: 10.1061/(ASCE)0733-9410(1996)122:1(39)
  • Elmekati, A. H. (2007). A framework for identification of geotechnical systems (PhD thesis). Civil Engineering Department, Rensselaer Polytechnic Institute, Troy, NY.
  • Gerolymos, N., & Gazetas, G. (2005). Constitutive model for 1-D cyclic soil behavior applied to seismic analyses of layered deposits. Soils and Foundations Japanese Geotechnical Society, 45, 147–159. doi: 10.3208/sandf.45.3_147
  • Ghayamghamian, M. R., & Motosaka, M. (2001). Identification of dynamic soil properties using vertical array recordings. In S. Prakash (Ed.), Proceedings: Fourth international conference on recent advances in geotechnical earthquake engineering and soil dynamics and symposium in Honor of Professor W. D. Liam Finn, 3.33, San Diego, CA.
  • Glaser, S. (1996). Insight into liquefaction by system identification. Geotechnique, 46, 641–655. doi: 10.1680/geot.1996.46.4.641
  • Glaser, S. D., & Chung, R. M. (1995). Evaluation of liquefying soil through time using system identification. In Proceedings, fifth US-Japan workshop on earthquake resistant design of lifeline facilities and countermeasures against soil liquefaction (pp. 331–346).
  • Groholski, D. R., Hashash, Y. M. A., & Matasovic, N. (2014). Learning of pore pressure response and dynamic soil behavior from downhole array measurements. Soil Dynamics and Earthquake Engineering, 61–62, 40–56. ] doi: 10.1016/j.soildyn.2014.01.018
  • Gunturi, V. R., Elgamal, A.-W. M., & Tang, H. T. (1998). Hualien seismic downhole data analysis. Engineering Geology, 50, 9–29. doi: 10.1016/S0013-7952(97)00084-7
  • Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Design equation and curves. Journal of the Soil Mechanics and Foundation Engineering Division, 98, 667–691.
  • Idriss, I. M., & Sun, J. I. (1992). SHAKE91, a computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits. University of California, Davis, CA.
  • Ishihara, K. (1996). Soil behavior in earthquake geotechnics. New York: Oxford University Press.
  • Li, W., & Assimaki, D. (2010). Simulation soil stiffness degradation in transient site response predictions. Soil Dynamics and Earthquake Engineering, 30, 299–309. doi: 10.1016/j.soildyn.2009.12.004
  • Lin, J. S., & Chao, B. K. (1990). Estimation of shear moduli and damping factors of earth dam materials. Earthquake Engineering & Structural Dynamics, 19, 891–910. doi: 10.1002/eqe.4290190609
  • Masing, G. (1926). Eigenspannungen and Verfertigung Beim Messing. In Proceedings 2nd International Congress on Applied Mechanics, Zurich, Switzerland.
  • Menq, F.-Y. (2003). Dynamic properties of sandy and gravelly soils (PhD dissertation). University of Texas, Austin, TX.
  • Mercado, V., El-Sekelly, W., Zeghal, M., & Abdoun, T. (2015). Identification of soil dynamic properties through optimization analysis. Computers and Geotechnics, 65, 175–186. ] doi: 10.1016/j.compgeo.2014.11.009
  • Mercado, V., Zeghal, M., El-Sekelly, W., & Abdoun, T. (2015). Comparison of an equivalent linear and a nonlinear soil model for the identification of soil dynamic properties. In Bienvenidos al XV Congreso Panamericano de Mecánica de Suelos e Ingeniería Geotécnica, Buenos Aires, Argentina, 15–18 November 2015.
  • Muravski, G. (2005). On description of hysteretic behavior of materials. International Journal of Solid Sand Structures, 42, 2625–2644.
  • Norris, R. M., & Webb, R. W. (1990). Geology of California (2nd ed.). New York: John Wiley & Sons.
  • Oskay, C. (2002). Local identification analyses of soils and soil-structure systems (PhD thesis). Civil and Environmental Engineering Department, Rensselaer Polytechnic Institute, Troy, NY.
  • Pearson, C. E. (1986). Numerical methods in engineering and science. New York: Van Nostrand Reinhold Co.
  • Pyke, R. (1979). Nonlinear soil models for irregular cyclic loadings. Journal of the Geotechnical Engineering Division, ASCE, 105, 715–725.
  • Ramberg, W., & Osgood, W. R. (1943). Description of stress strain curves by three parameters (Tech. Note 902). Washington, DC: National Advisory Committee for Aeronautics.
  • Roblee, C., & Chiou, B. (2004). A proposed geoindex model for design selection of non-linear properties for site response analysis. In Proc., NSF/PEER international workshop on uncertainties in nonlinear soil properties and their impact on modeling dynamic soil response, University of California at Berkeley, Berkeley, CA. Retrieved from http://peer.berkeley.edu/lifelines/Workshop304/&
  • Safak, E. (1988). Analysis of recordings in structural engineering: Adaptive filtering, prediction and control (Open File Rep. 88-647). Menlo Park, CA: United State Geologic Survey.
  • Schanz, T., Vermeer, P. A., & Bonnier, P. G. (1999). The hardening soil model: Formulation and verification. In Beyond 2000 Computational Geotechnics-10 years of PLAXIS, Balkema, Rotterdam.
  • Schofield, A. N., & Wroth, P. (1968). Critical state soil mechanics. London: McGraw-Hill.
  • Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analyses (Report No. EERC-70-10). Berkeley, CA: Earthquake Engineering Research Center, University of California.
  • Seed, H. B., & Sun, J. H. (1989). Implication of Site Effects in the Mexico City Earthquake of September 19, 1985 for Earthquake-Resistance-Design Criteria in the San Francisco Bay Area of California (Report No. UCB/EERC-89/03). Berkeley, CA: University of California.
  • Steller, R. (1996). New borehole geophysical results at GVDA (NEES@UCSB Internal Report). Retrieved from http://nees.ucsb.edu/sites/eot-dev.nees.ucsb.edu/files/facilities/docs/GVDA-Geotech-Stellar1996.pdf.
  • Suzumura, J., Kawamata, Y., Nakamura, M., & Hanada, K. (2008). Identification method of dynamic properties of ground based on the seismic observation record. In The 14th world conference on earthquake engineering, Beijing, China.
  • Taboada-Urtuzuastegui, V. M., Martinez, H., Romo, M. P., & Ardila, C. D. (2000). Identification of Mexico City clay dynamic properties. In Proceedings of the 12th world conference on earthquake engineering, New Zealand.
  • Towhata, I. (2008). Geotechnical earthquake engineering. Berlin: Springer-Verlag.
  • Truesdell, C. (1955). Hypo-elasticity. Indiana University Mathematics Journal, 4, 83–133. ] doi: 10.1512/iumj.1955.4.54002
  • Tsai, C. C., & Hashash, Y. M. A. (2009). Learning of dynamic soil behavior from downhole arrays. Journal of Geotechnical and Geoenvironmental Engineering, 135, 745–757. ] doi: 10.1061/(ASCE)GT.1943-5606.0000050
  • Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, 117, 89–107. doi: 10.1061/(ASCE)0733-9410(1991)117:1(89)
  • Wen, K.-L. (1994). Non-linear soil response in ground motions. Earthquake Engineering & Structural Dynamics, 23, 599–608. doi: 10.1002/eqe.4290230603
  • Zeghal, M., & Elgamal, A.-W. (1993). Lotung site: Downhole seismic data analysis (Report). Palo Alto, CA: Electric Power Research Institute.
  • Zeghal, M., & Elgamal, A.-W. (2000). Site response and vertical seismic arrays. Progress in Structural Engineering and Materials, 1, 92–101. doi: 10.1002/(SICI)1528-2716(200001/03)2:1<92::AID-PSE11>3.0.CO;2-6
  • Zeghal, M., Elgamal, A.-W., Tang, H., & Stepp, J. (1995a). Lotung Downhole Array. I: Evaluation of site dynamic properties. Journal of Geotechnical Engineering, ASCE, 121, 350–362. doi: 10.1061/(ASCE)0733-9410(1995)121:4(350)
  • Zeghal, M., Elgamal, A.-W., Tang, H., & Stepp, J. (1995b). Lotung downhole array. II: Evaluation of soil nonlinear properties. Journal of Geotechnical Engineering, ASCE, 121, 363–378. ] doi: 10.1061/(ASCE)0733-9410(1995)121:4(363)
  • Zhang, J., Andrus, R. D., & Juang, C. H. (2005). Normalized shear modulus and material damping ratio relationships. Journal of Geotechnical and Geoenvironmental Engineering, 131, 453–464. doi: 10.1061/(ASCE)1090-0241(2005)131:4(453)
  • Zorapapel, G., & Vucetic, M. (1994). The effects of seismic pore water pressure on ground surface motion. Earthquake Spectra, 10, 403–438. doi: 10.1193/1.1585780

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.