135
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Characterisation and propagation of spatial fields in deterioration models: application to concrete carbonation

, ORCID Icon, , , &
Pages 2261-2287 | Received 22 Oct 2018, Accepted 09 May 2019, Published online: 03 Jun 2019

References

  • Bastidas-Arteaga, E., & Schoefs, F. (2012). Stochastic improvement of inspection and maintenance of corroding reinforced concrete structures placed in unsaturated environments. Engineering Structures, 41, 50–62. doi:10.1016/j.engstruct.2012.03.011
  • Bastidas-Arteaga, E., & Schoefs, F. (2015). Sustainable maintenance and repair of RC coastal structures. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 168(4), 162–173. doi:10.1680/jmaen.14.00018
  • Brooker, P. I. (1986). A parametric study of robustness of kriging variance as a function of range and relative nugget effect for a spherical semivariogram. Mathematical Geology, 18(5), 477–488. doi:10.1007/BF00897500
  • Cameletti, M., Lindgren, F., Simpson, D., & Rue, H. (2013). Spatio-temporal modeling of particulate matter concentration through the SPDE approach. AStA Advances in Statistical Analysis, 97(2), 109–131. doi:10.1007/s10182-012-0196-3
  • Clerc, M., & Mallat, S. (2003). Estimating deformations of stationary processes. The Annals of Statistics, 31(6), 1772–1821. doi:10.1214/aos/1074290327
  • Clerc, R., Oumouni, M., & Schoefs, F. (2019). Scap-1d: A spatial correlation assessment procedure from unidimensional discrete data. Reliability Engineering & System Safety (Under Review). doi:10.1016%2Fj.ress.2019.106498
  • Der Kiureghian, A., & Ke, J. (1988). The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 3(2), 83–91. doi:10.1016/0266-8920(88)90019-7
  • EN-13-791 (2007). Assessment of in-situ compressive strength in structures and pre-cast concrete components. Published and distributed by Association Française de Normalisation (AFNOR — French standard institute), L Plaine Saint-Denis, France.
  • Engelund, S., & Sorensen, J. D. (1998). Maintenance planning for chloride initiated corrosion in concrete structures. Structural safety and reliability: Proceedings of the 7th international conference on structural safety and reliability (pp. 435–442). Rotterdam: CRC Press/Balkema.
  • Gomes, H. M., & Awruch, A. M. (2002). Reliability of reinforced concrete structures using stochastic finite elements. Engineering Computations, 19(7–8), 764–786.
  • Gomez-Cardenas, C., Sbartaï, M., Garnier, V., & Balayssac, J. (2015). NDT inspection strategy to minimize the number of samples for onsite concrete evaluation. Proceedings of International Symposium on NDT-CE, Berlin, Germany (15–17 September).
  • Hyvert, N. (2009). Application de l’approche probabiliste de la durabilité des produits préfabriqués en béton. PhD Thesis, Université de Toulouse III-Paul Sabatier, Université de Toulouse III-Paul Sabatier.
  • Karhunen, K. (1947). Uber lineare methoden in der wahrscheinlichkeitsrechnung. American Academic Sciences, 37, 3–79.
  • Karimi, A., Ramachandran, K., & Buenfeld, N. R. (2005). Probabilistic analysis of reinforcement corrosion with spatial variability. 9th International Conference on Structural Safety and Reliability, ICOSSAR’05, Millpress, Rotterdam.
  • Kenshel, O. M. (2009). Influence of spatial variability of whole life management of reinforced concrete bridges. PhD Thesis, University of Dublin, Trinity College, University of Dublin, Trinity College.
  • Kim, H. (2005). Spatial variability in soils: Stiffness and strength. PhD Thesis, Georgia Institute of Technology, Georgia.
  • Li, C. Q. (2004). Reliability based service life prediction of corrosion affected concrete structures. PhD Thesis, Delft University, The Netherlands.
  • Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between gaussian fields and gaussian markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 423–498. doi:10.1111/j.1467-9868.2011.00777.x
  • Loeve, M. (1948). Fonctions aléatoires du second ordre. Supplement to P. Levy. Processus stochastic et mouvement Brownien. Gauthier-Villars, Paris, 1965.
  • Miragliotta, R. (2000). Modélisation des processus physico-chimiques de la carbonatation des bétons préfabriqués: Prise en comptes des effets de paroi. Ph.D. thesis, Université de la Rochelle, Université de la Rochelle.
  • Moshtaghin, A. F., Franke, S., Keller, T., & Vassilopoulos, A. P. (2016). Experimental characterization of longitudinal mechanical properties of clear timber: Random spatial variability and size effects. Construction & Building Materials, 120, 432–441. doi:10.1016/j.conbuildmat.2016.05.109
  • NF-18-459. (2010). Concrete: Testing hardened concrete: Testing porosity and density. Association Française de Normalisation (AFNOR), La plaine Saint-Denis, France.
  • O’Connor, A., Sheils, E., Breysse, D., & Schoefs, F. (2013). Markovian bridge maintenance planning incorporating corrosion initiation and non-linear deterioration. ASCE Journal of Bridge Engineering, 18(3), 189–199. doi:10.1061/(ASCE)BE.1943-5592.0000342
  • Othmen, I., Bonnet, S., & Schoefs, F. (2018). Statistical investigation of different analysis methods for chloride profiles within a real structure in a marine environment. Ocean Engineering, 157, 96–107. doi:10.1016/j.oceaneng.2018.03.040
  • Papadakis, V., Vayenas, C., & Fardis, M. (1991). Fundamental modelling and experimental investigation of concrete carbonation. ACI Materials Journal, 4(88), 363–373.
  • Rakotovao Ravahatra, N., Bastidas-Arteaga, E., Schoefs, F., de Larrard, T., & Duprat, F. (2019). Probabilistic and sensitivity analysis of analytical models of corrosion onset for reinforced concrete structures. European Journal of Environmental & Civil Engineering, 1. doi:10.1080/19648189.2019.1591307
  • Rakotovao Ravahatra, N., Schoefs, F., Duprat, F., de Larrard, T., & Bastidas-Arteaga, E. (2017). Assessing the capability of analytical carbonation models to propagate uncertainties and spatial variability of reinforced concrete structures. Frontiers in Built Environment: Bridge Engineering, 3(1), 1–9.
  • Schmitt, G. (2009). Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control. New York, NY: The World Corrosion Organization.
  • Schoefs, F., Bastidas-Arteaga, E., & Tran, T. (2017a). Optimal embedded sensor placement for spatial variability assessment of stationary random fields. Engineering Structures, 17, 35–44. doi:10.1016/j.engstruct.2017.08.070
  • Schoefs, F., Bastidas-Arteaga, E., Tran, T., Villain, G., & Derobert, X. (2016). Characterization of random fields from NDT measurements: A two stages procedure. Engineering Structures, 111, 312–322. doi:10.1016/j.engstruct.2015.11.041
  • Schoefs, F., Oumouni, M., Clerc, R., Othmen, I., & Bonnet, S. (2017b). Statistical analysis and probabilistic modeling of chloride ingress spatial variability in concrete coastal infrastructures. Edition 4, Split, Croatia, Coastal and Maritime Mediterranean Conference.
  • Stewart, M. (2006). Spatial variability of damage and expected maintenance costs for deteriorating RC structures. Structure & Infrastructure Engineering: Maintenance, Management, Life-Cycle Design & Performance, 2(2), 70–90.
  • Stewart, M., & Mullard, J. (2007). Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures. Engineering Structures, 29(7), 1457–1464. doi:10.1016/j.engstruct.2006.09.004
  • Tesfamariam, S., Bastidas-Arteaga, E., & Lounis, Z. (2018). Seismic retrofit screening of existing highway bridges with consideration of chloride-induced deterioration: A Bayesian belief network model. Frontiers in Built Environment, 4, 1–11.
  • Torres-Luque, M., Bastidas-Arteaga, E., Schoefs, F., Sanchez-Silva, M., & Osma, J. (2014). Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges. Construction & Building Materials, 68, 68–81. doi:10.1016/j.conbuildmat.2014.06.009
  • Torres-Luque, M., Osma, J., Sanchez-Silva, M., Bastidas-Arteaga, E., & Schoefs, F. (2017). Chlordetect: Commercial calcium aluminate based conductimetric sensor for chloride presence detection. Sensors, 17, 1–19.
  • Vanmarcke, E.-H., & Grigoriu, M. (1983). Stochastic finite element analysis of simple beams. Journal of Enginnering & Mechanics, 109(5), 1203–1214. doi:10.1061/(ASCE)0733-9399(1983)109:5(1203)
  • Villain, G., Balayssac, J., & Garnier, V. (2017). Non-destructive testing and evaluation of civil engineering structures, 1st edition, Chapter 9, 1st edition. Elsevier Ltd.
  • Wagner, H. H., Holderegger, R., Werth, S., Gugerli, F., Hoebee, S. E., & Scheidegger, C. (2005). Variogram analysis of the spatial genetic structure of continuous populations using multilocus microsatellite data. Genetics, 169(3), 1739–1752. doi:10.1534/genetics.104.036038
  • Wang, H., Wang, X., Wellmann, J. F., & Liang, R. Y. (2018). Bayesian stochastic soil modeling framework using Gaussian markov random fields. ASCE–ASME Journal of Risk & Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(2), 04018014. doi:10.1061/AJRUA6.0000965
  • Yin, J., Ng, S., & Ng, K. (2011). Kriging metamodel with modified nugget-effect: The heteroscedastic variance case. Computers & Industrial Engineering, 61, 760–777. doi:10.1016/j.cie.2011.05.008
  • Ying-Yu, L., & Qui-Dong, W. (1987). The mechanism of carbonation of mortars and the dependence of carbonation on pore structure. Proc. Katharine and Bryant Mather Int. Conf. on Concrete Durability, ACI-SP 100, pp. 1915–1943. Atlanta.
  • Zhu, F., Zhou, Q., Wang, F., & Yang, X. (2017). Spatial variability and sensitivity analysis on the compressive strength of hollow concrete block masonry wallettes. Construction & Building Materials, 140, 129–138. doi:10.1016/j.conbuildmat.2017.02.099

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.