402
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Estimating the amount of cadmium and lead in the polluted soil using artificial intelligence models

, ORCID Icon &
Pages 933-951 | Received 08 Jul 2019, Accepted 24 Oct 2019, Published online: 27 Nov 2019

Reference

  • Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer-Verlag. 533.
  • Akbarzadeh, A., Mehrjardi, R. T., Rouhipour, H., Gorji, M., & Rahimi, H. G. (2009). Estimating of soil erosion covered with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal of Applied Sciences Research, 5(5), 505–514.
  • Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In Heavy metals in soils (pp. 11–50). Dordrecht, Netherlands: Springer.
  • Amini, M., Abbaspour, K. C., Khademi, H., Fathianpour, N., Afyuni, M., & Schulin, R. (2005). Neural network models to predict cation exchange capacity in arid regions of Iran. European Journal of Soil Science, 56(4), 551–559. doi:10.1111/j.1365-2389.2005.0698.x
  • Anagu, I., Ingwersen, J., Utermann, J., & Streck, T. (2009). Estimation of heavy metal sorption in German soils using artificial neural networks. Geoderma, 152(1–2), 104–112. doi:10.1016/j.geoderma.2009.06.004
  • Anirudhan, T. S., Rijith, S., & Tharun, A. R. (2010). Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 368(1-3), 13–22. doi:10.1016/j.colsurfa.2010.07.005
  • Arsenović, M., Stanković, S., Radojević, Z., & Pezo, L. (2013). Prediction and fuzzy synthetic optimization of process parameters in heavy clay brick production. Ceramics International, 39(2), 2013–2022. doi:10.1016/j.ceramint.2012.08.053
  • Ataee, O., Hafezi Moghaddas, N., Lashkaripour, G. R., & Jabbari Nooghabi, M. (2018). Predicting shear wave velocity of soil using multiple linear regression analysis and artificial neural networks. Scientia Iranica, 25(4), 1943–1955. doi:10.24200/sci.2017.4263
  • Azamathulla, H. M., Chang, C. K., Ghani, A. A., Ariffin, J., Zakaria, N. A., & Hasan, Z. A. (2009). An ANFIS-based approach for predicting the bed load for moderately sized rivers. Journal of Hydro-Environment Research, 3(1), 35–44. doi:10.1016/j.jher.2008.10.003
  • Barančíková, G., Madams, M., & Rybàr, O. (2004). Crop contamination by selected trace elements. Journal of Soils and Sediments, 4(1), 37–42. doi:10.1007/BF02990827
  • Bateni, S. M., Borghei, S., & Jeng, D.-S. (2007). Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Engineering Applications of Artificial Intelligence, 20(3), 401–414. doi:10.1016/j.engappai.2006.06.012
  • Behrens, T., Förster, H., Scholten, T., Steinrücken, U., Spies, E., & Goldschmitt, M. (2005). Digital soil mapping using artificial neural networks. Journal of Plant Nutrition and Soil Science, 168(1), 21–33. doi:10.1002/jpln.200421414
  • Bila, S., Harkouss, Y., Ibrahim, M., Rousset, J., N'Goya, E., Baillargeat, D., … Guillon, P. (1999). An accurate wavelet neural‐network‐based model for electromagnetic optimization of microwave circuits. International Journal of RF and Microwave Computer-Aided Engineering, 9(3), 297–306. doi:10.1002/(SICI)1099-047X(199905)9:3<297::AID-MMCE13>3.0.CO;2-W
  • Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. In: Methods of soil analysis. Part 2. Chemical and microbiological properties, Page, A.L., Miller, R.H. and Keeney, D.R. Eds., American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, 595–624.
  • Cachada, A., Rocha-Santos, T., & Duarte, A. C. (2018). Chapter 1 - Soil and pollution: An introduction to the main issues. In A. C. Duarte, A. Cachada, & T. B. T.S. P. Rocha-Santos (Eds.). Elsevier. doi:10.1016/B978-0-12-849873-6.00001-7
  • Chu, Y., Liu, S., Cai, G., & Bian, H. (2019). Artificial neural network prediction models of heavy metal polluted soil resistivity. European Journal of Environmental and Civil Engineering, 1. doi:10.1080/19648189.2019.1585962
  • Dai, F., Zhou, Q., Lv, Z., Wang, X., & Liu, G. (2014). Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecological Indicators, 45, 184–194. doi:10.1016/j.ecolind.2014.04.003
  • Devabhaktuni, V. K., Yagoub, M. C. E., Fang, Y., Xu, J., & Zhang, Q. (2001). Neural networks for microwave modeling: Model development issues and nonlinear modeling techniques. International Journal of RF and Microwave Computer-Aided Engineering, 11(1), 4–21. doi:10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I
  • Emamgholizadeh, S., Bahman, K., Bateni, S. M., Ghorbani, H., Marofpoor, I., & Nielson, J. R. (2017). Estimation of soil dispersivity using soft computing approaches. Neural Computing and Applications, 28(S1), 207–216. doi:10.1007/s00521-016-2320-x
  • Emamgholizadeh, S., Esmaeilbeiki, F., Babak, M., Zarehaghi, D., Maroufpoor, E., & Rezaei, H. (2018). Communications in Soil Science and Plant Analysis Estimation of the organic carbon content by the pattern recognition method. Communications in Soil Science and Plant Analysis, 49(17), 2143–2154. doi:10.1080/00103624.2018.1499750
  • Emamgolizadeh, S., Bateni, S. M., Shahsavani, D., Ashrafi, T., & Ghorbani, H. (2015). Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS). Journal of Hydrology, 529, 1590–1600. doi:10.1016/j.jhydrol.2015.08.025
  • Emamgholizadeh, S. (2012). Neural network modeling of scour cone geometry around outlet in the pressure flushing. Glob Nest Journal, 14, 540–549.
  • Emamgholizadeh, S., & Karimi, R. (2019). A comparison of artificial intelligence models for the estimation of daily suspended sediment load: A case study on the Telar and Kasilian rivers in Iran. Water Science and Technology: Water Supply, 19(1), 165–178. doi:10.2166/ws.2018.062
  • Emamgholizadeh, S., Shahsavani, S., & Eslami, M. A. (2017). Comparison of artificial neural networks, geographically weighted regression and Cokriging methods for predicting the spatial distribution of soil macronutrients (N, P, and K). Chinese Geographical Science, 27(5), 747–759. doi:10.1007/s11769-017-0906-6
  • Farifteh, J., Van der Meer, F., Atzberger, C., & Carranza, E. J. M. (2007). Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment, 110(1), 59–78. doi:10.1016/j.rse.2007.02.005
  • Farjam, A., Omid, M., Akram, A., & Fazel Niari, Z. (2014). A neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields. Journal of Agricultural Science and Technology, 16(4), 767–778.
  • Fausett, L. V. (1994). Fundamentals of neural networks: Architectures, algorithms, and applications (Vol. 3). Englewood Cliffs: Prentice-Hall.
  • Gareth, J. (2010). An introduction to statistical learning: With applications in R. Springer-Verlag, Berlin, Germany: Springer Verlag.
  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis 1. USA: Soil Science Society of America, American Society of Agronomy.
  • Ghorbani, H., Kashi, H., Hafezi Moghadas, N., & Emamgholizadeh, S. (2015). Estimation of soil cation exchange capacity using multiple regression, artificial neural networks, and adaptive neuro-fuzzy inference system models in Golestan Province, Iran. Communications in Soil Science and Plant Analysis, 46(6), 763–780. doi:10.1080/00103624.2015.1006367
  • Haykin, S. (1999). Recent developments in the core of digital signal processing: Adaptive filters. IEEE Signal Processing Magazine, 16, 20–22.
  • Huang, S., Zhang, R., Zhang, J., & Pan, R. (2009). Effects of pH and soil texture on the adsorption and transport of Cd in soils. Science in China Series E: Technological Sciences, 52(11), 3293–3299.
  • Hunter, C. M., Moller, H., & Fletcher, D. (2000). Parameter uncertainty and elasticity analyses of a population model: Setting research priorities for shearwaters. Ecological Modelling, 134(2–3), 299–324. doi:10.1016/S0304-3800(00)00344-6
  • Ingwersen, J. (2001). The environmental fate of cadmium in the soils of the waste water irrigation area of Braunschweig: Measurement, modelling and assessment. Technische Universität Braunschweig Germany.
  • Izady, A., Sanikhani, H., Abdalla, O., Chen, M., & Kisi, O. (2017). Impurity effect on clear water evaporation: Toward modelling wastewater evaporation using ANN, ANFIS-SC and GEP techniques. Hydrological Sciences Journal, 62(11), 1856–1866. doi:10.1080/02626667.2017.1356023
  • Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685. doi:10.1109/21.256541
  • Janik, L. J., Forrester, S. T., & Rawson, A. (2009). The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemometrics and Intelligent Laboratory Systems, 97(2), 179–188. doi:10.1016/j.chemolab.2009.04.005
  • Kashi, H., Emamgholizadeh, S., & Ghorbani, H. (2014). Estimation of soil infiltration and cation exchange capacity based on multiple regression, ANN (RBF, MLP), and ANFIS models. Communications in Soil Science and Plant Analysis, 45(9), 1195–1213. doi:10.1080/00103624.2013.874029
  • Khaledian, Y., Pereira, P., Brevik, E. C., Pundyte, N., & Paliulis, D. (2017). The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in Lithuanian Podzols. Land Degradation & Development, 28(1), 345–354. doi:10.1002/ldr.2638
  • Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2014). Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information Processing in Agriculture, 1, 14–22. doi:10.1016/j.inpa.2014.04.001
  • Kimura, M., & Nakano, R. (2000). Dynamical systems produced by recurrent neural networks. Systems and Computers in Japan, 31(4), 77–86. doi:10.1002/(SICI)1520-684X(200004)31:4<77::AID-SCJ8>3.3.CO;2-P
  • Kişi, Ö. (2004). River flow modeling using artificial neural networks. Journal of Hydrologic Engineering, 9(1), 60–63. doi:10.1061/(ASCE)1084-0699(2004)9:1(60)
  • Köleli, N., Eker, S., & Cakmak, I. (2004). Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environmental Pollution, 131(3), 453–459. doi:10.1016/j.envpol.2004.02.012
  • Liu, M., Liu, X., Wu, M., Li, L., & Xiu, L. (2011). Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model. Computers & Geosciences, 37(10), 1642–1652. doi:10.1016/j.cageo.2011.03.009
  • Liu, W., Liu, Q., Ruan, F., Liang, Z., & Qiu, H. (2007). Springback prediction for sheet metal forming based on GA-ANN technology. Journal of Materials Processing Technology, 187–188, 227–231. doi:10.1016/j.jmatprotec.2006.11.087
  • Maroufpoor, E., Sanikhani, H., Emamgholizadeh, S., & Kişi, Ö. (2018). Estimation of Wind drift and evaporation losses from sprinkler irrigation systems by different data‐driven methods. Irrigation and Drainage, 67(2), 222–232. doi:10.1002/ird.2182
  • McGrath, S. P., & Cunliffe, C. H. (1985). A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. Journal of the Science of Food and Agriculture, 36(9), 794–798. doi:10.1002/jsfa.2740360906
  • McNeill, D., & Freiberger, P. (1994). Fuzzy logic: The revolutionary computer technology that is changing our world. New York, NY: Simon and Schuster.
  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872. doi:10.1016/j.chemosphere.2006.03.016
  • Mirmahmoudi, R., Niknafs, Z., Alba, M., Esmaeilipour, O., Moghbeli, S. M., Badakhshan, Y., & Souri, M. (2017). Seasonal pattern of skin follicles activity and fibre growth in grazing fat-tailed Kermani sheep in the South of Iran. Small Ruminant Research, 151, 66–71. doi:10.1016/j.smallrumres.2017.04.020
  • Mirabbasi, R., Kisi, O., Sanikhani, H., & Meshram, S. G. (2018). Monthly long-term rainfall estimation in Central India using M5Tree, MARS, LSSVR, ANN and GEP models. Neural Computing Applications, 31, 6843–6862.
  • Montaseri, M., Ghavidel, S. Z. Z., & Sanikhani, H. (2018). Water quality variations in different climates of Iran: Toward modeling total dissolved solid using soft computing techniques. Stochastic Environmental Research and Risk Assessment, 32(8), 2253–2273. doi:10.1007/s00477-018-1554-9
  • Najafzadeh, M., Ghaemi, A., & Emamgholizadeh, S. (2018). Prediction of water quality parameters using evolutionary computing-based formulations. International Journal of Environmental Science Technology, 16, 6377–6396.
  • Olsen, S. R., Sommers, L. E., & Page, A. L. (1982). Methods of soil analysis. Part 2. Chemical and Microbiological Properties of Phosphorus. ASA Monograph, 9, 403–430.
  • Parhizkar, S., Ajdari, K., Kazemi, G. A., & Emamgholizadeh, S. (2015). Predicting water level drawdown and assessment of land subsidence in Damghan aquifer by combining GMS and GEP models. Geopersia, 5(1), 63–80.
  • Parsaie, A., Emamgholizadeh, S., Azamathulla, H. M., & Haghiabi, A. H. (2018). ANFIS-based PCA to predict the longitudinal dispersion coefficient in rivers. International Journal of Hydrology Science and Technology, 8(4), 410–424. doi:10.1504/IJHST.2018.095537
  • Pezo, L., Arsenović, M., & Radojević, Z. (2014). ANN model of brick properties using LPNORM calculation of minerals content. Ceramics International, 40(7), 9637–9645. doi:10.1016/j.ceramint.2014.02.044
  • Qi, F., Zhu, A.-X., Harrower, M., & Burt, J. E. (2006). Fuzzy soil mapping based on prototype category theory. Geoderma, 136(3–4), 774–787.
  • Safa, M., Samarasinghe, S., & Mohssen, M. (2011). A field study of energy consumption in wheat production in Canterbury, New Zealand. Energy Conversion and Management, 52(7), 2526–2532. doi:10.1016/j.enconman.2011.01.004
  • Sanikhani, H., Deo, R. C., Yaseen, Z. M., Eray, O., & Kisi, O. (2018). Non-tuned data intelligent model for soil temperature estimation: A new approach. Geoderma, 330, 52–64. doi:10.1016/j.geoderma.2018.05.030
  • Sarmadian F., Taghizadeh R. A., Asgari H. M., & Akbarzadeh A. (2009). The Comparison of Neuro fuzzy, ANN and Multiple Regression in prediction some soil characteristics in golestan province. Iraninan Soil and Water Research Journal, 1(41), 211–220.
  • Schaap, M. G., & Bouten, W. (1996). Modeling water retention curves of sandy soils using neural networks. Water Resources Research, 32(10), 3033–3040. doi:10.1029/96WR02278
  • Schaap, M. G., Leij, F. J., & Van Genuchten, M. T. (2001). Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3–4), 163–176. doi:10.1016/S0022-1694(01)00466-8
  • Seshadri, B., Bolan, N. S., Wijesekara, H., Kunhikrishnan, A., Thangarajan, R., Qi, F., & Naidu, R. (2016). Phosphorus-cadmium interactions in paddy soils. Geoderma, 270, 43–59. doi:10.1016/j.geoderma.2015.11.029
  • Streck, T., & Richter, J. (1997). Heavy metal displacement in a sandy soil at the field scale: II. Modeling. Journal of Environmental Quality, 26(1), 56–62.
  • Suditu, G. D., Curteanu, S., & Bulgariu, L. (2013). Neural networks-based modeling applied to a process of heavy metals removal from wastewaters. Journal of Environmental Science and Health, Part A, 48(11), 1399–1412. doi:10.1080/10934529.2013.781896
  • Tay, J.-H., & Zhang, X. (2000). A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Research, 34(11), 2849–2860. doi:10.1016/S0043-1354(00)00057-9
  • Tudoreanu, L., & Phillips, C. J. C. (2004). Empirical models of cadmium accumulation in maize, rye grass and soya bean plants. Journal of the Science of Food and Agriculture, 84(8), 845–852.
  • Vidal, M., Santos, M. J., Abrão, T., Rodríguez, J., & Rigol, A. (2009). Modeling competitive metal sorption in a mineral soil. Geoderma, 149(3–4), 189–198.
  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. doi:10.1097/00010694-193401000-00003
  • Washburn, C., Motavalli, P., Kitchen, N., & Potter, D. (2002). Soil Phosphorous spatial distribution in pastures receiving poultry litter applications. Madison, WI: American Society of Agronomy.
  • Wösten, J. H. M., Pachepsky, Y. A., & Rawls, W. J. (2001). Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251(3–4), 123–150. doi:10.1016/S0022-1694(01)00464-4
  • Yang, F., Cao, S., Liu, X., & Yang, K. (2008). Design of groundwater level monitoring network with ordinary kriging. Journal of Hydrodynamics, 20(3), 339–346. doi:10.1016/S1001-6058(08)60066-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.