561
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Displacement prediction of water-induced landslides using a recurrent deep learning model

, , , , & ORCID Icon
Pages 2460-2474 | Received 08 Mar 2020, Accepted 14 Mar 2020, Published online: 10 Jun 2020

References

  • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). Tensorflow: a system for large-scale machine learning [Paper presentation].Paper Presented at the OSDI.
  • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166. https://doi.org/10.1109/72.279181
  • Brockwell, P. J., Davis, R. A., & Calder, M. V. (2002). Introduction to time series and forecasting (Vol. 2). Springer.
  • Cao, Y., Yin, K., Alexander, D. E., & Zhou, C. (2016). Using an extreme learning machine to predict the displacement of step-like landslides in relation to controlling factors. Landslides, 13(4), 725–736. https://doi.org/10.1007/s10346-015-0596-z
  • Casagli, N., Catani, F., Del Ventisette, C., & Luzi, G. (2010). Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides, 7(3), 291–301. https://doi.org/10.1007/s10346-010-0215-y
  • Chen, Y. L., Irfan, M., Uchimura, T., Cheng, G. W., & Nie, W. (2018). Elastic wave velocity monitoring as an emerging technique for rainfall-induced landslide prediction. Landslides, 15(6), 1155–1172. https://doi.org/10.1007/s10346-017-0943-3
  • Conte, E., Donato, A., & Troncone, A. (2017). A simplified method for predicting rainfall-induced mobility of active landslides. Landslides, 14(1), 35–45. https://doi.org/10.1007/s10346-016-0692-8
  • Corominas, J., Moya, J., Ledesma, A., Lloret, A., & Gili, J. A. (2005). Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides, 2(2), 83–96. https://doi.org/10.1007/s10346-005-0049-1
  • Du, J., Yin, K., & Lacasse, S. (2013). Displacement prediction in colluvial landslides, Three Gorges Reservoir, China. Landslides, 10(2), 203–218. https://doi.org/10.1007/s10346-012-0326-8
  • François, C. (2015). Keras: The Python Deep Learning library. Retrieved from https://keras.io/
  • Gers, F. A., Eck, D., & Schmidhuber, J. (2002). Applying LSTM to Time Series Predictable Through Time-Window Approaches. In G. Dorffner, H. Bischof, K. Hornik (Eds.). Artificial Neural Networks — ICANN 2001. Springer
  • Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural Computation., 12(10), 2451–2471. https://doi.org/10.1162/089976600300015015
  • Graves, A., Fernández, S., & Schmidhuber, J. (2005). Bidirectional LSTM networks for improved phoneme classification and recognition [Paper presentation].Paper presented at the International Conference on Artificial Neural Networks.
  • Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924
  • Hayashi, S., Komamura, F., & Park, B.-W. (1988). On the Forecast of Time to Failure of Slope. Landslides, 24(4), 11–18. https://doi.org/10.3313/jls1964.24.4_11
  • He, K., Yang, J., & Wang, S. (2005). Analysis of dynamic factors of debris landslide by means of the model of quantitative theory—using the Xintan landslide, China, as an example. Environmental Geology, 48(6), 676–681. https://doi.org/10.1007/s00254-005-0002-6
  • Hochreiter, S. (1998). The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 06(02), 107–116. https://doi.org/10.1142/S0218488598000094
  • Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation., 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Huang, F., Huang, J., Jiang, S., & Zhou, C. (2017). Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Engineering Geology., 218, 173–186. https://doi.org/10.1016/j.enggeo.2017.01.016
  • Hu, Y-x., Li, H-b., Qi, S-c., Fan, G., & Zhou, J-w. (2020). Granular Effects on Depositional Processes of Debris Avalanches. KSCE Journal of Civil Engineering, 24(4), 1116–1127. https://doi.org/10.1007/s12205-020-1555-3
  • Hu, Y-x., Yu, Z-y., & Zhou, J-w. (2020). Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha River. Landslides, https://doi.org/10.1007/s10346-020-01382-x
  • Jones, E., Oliphant, T., & Peterson, P. (2014). SciPy: open source scientific tools for Python.
  • Kalchbrenner, N., Danihelka, I., & Graves, A. (2015). Grid long short-term memory. arXiv, abs/1507.01526, 1–15.
  • Li, X. Z., Kong, J. M., & Wang, Z. Y. (2012). Landslide displacement prediction based on combining method with optimal weight. Natural Hazards, 61(2), 635–646. https://doi.org/10.1007/s11069-011-0051-y
  • Liu, Z., Shao, J., Xu, W., Chen, H., & Shi, C. (2014). Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. Landslides, 11(5), 889–896. https://doi.org/10.1007/s10346-013-0443-z
  • Li, H., Xu, Q., He, Y., & Deng, J. (2018). Prediction of landslide displacement with an ensemble-based extreme learning machine and copula models. Landslides, 15(10), 2047–2059. https://doi.org/10.1007/s10346-018-1020-2
  • Meng, Q.-X., Wang, H. L., Xu, W. Y., & Cai, M. (2018). A numerical homogenization study of the elastic property of a soil-rock mixture using random mesostructure generation. Computers and Geotechnics., 98(2018), 48–57. https://doi.org/10.1016/j.compgeo.2018.01.015
  • Meng, Q.-X., Wang, H. L., Xu, W. Y., Cai, M., Xu, J., & Zhang, Q. (2019). Multiscale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modeling. Computers and Geotechnics., 115, 103164. https://doi.org/10.1016/j.compgeo.2019.103164
  • Meng, Q.-X., Wang, H.-L., Xu, W.-Y., & Chen, Y.-L. (2019). Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass. Int J Rock Mech Min, 124, 104127. https://doi.org/10.1016/j.ijrmms.2019.104127
  • Miao, F., Wu, Y., Xie, Y., & Li, Y. (2018). Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides, 15(3), 475–488. https://doi.org/10.1007/s10346-017-0883-y
  • Mufundirwa, A., Fujii, Y., & Kodama, J. (2010). A new practical method for prediction of geomechanical failure-time. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1079–1090. https://doi.org/10.1016/j.ijrmms.2010.07.001
  • Olah, C. (2015). Understanding LSTM networks.
  • Ordonez, F. J., & Roggen, D. (2016). Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors, 16(1), 115. doi:ARTN 115 10.3390/s16010115 https://doi.org/10.3390/s16010115
  • Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927–930. https://doi.org/10.1130/G33217.1
  • Qin, S. Q., Jiao, J. J., & Wang, S. J. (2002). A nonlinear dynamical model of landslide evolution. Geomorphology, 43(1-2), 77–85. https://doi.org/10.1016/S0169-555X(01)00122-2
  • Rose, N. D., & Hungr, O. (2007). Forecasting Potential Rock Slope Failure In Open Pit Mines Using the Inverse-velocity Method - Case Examples < SE-END> [Paper presentation].</SE-END>1st Canada - U.S. Rock Mechanics Symposium, Vancouver, Canada.
  • Saito, M. (1965). Forecasting the time of occurrence of slope failure < SE-END> [Paper presentation].</SE-END>Paper Presented at the Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montréal.
  • Saito, M. (1969). Paper Presented at the Proc. 7th Int. Conf on Soil Mechanics and Foundation Engineering, Mexico City. Forecasting time of slope failure by tertiary creep.
  • Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python < SE-END> [Paper presentation].</SE-END>Paper Presented at the Proceedings of the 9th Python in Science Conference. https://doi.org/10.25080/Majora-92bf1922-011
  • Voight, B. (1988). A method for prediction of volcanic eruptions. Nature, 332(6160), 125–130. https://doi.org/10.1038/332125a0
  • Xu, W. Y., Meng, Q. X., Wang, R. B., & Zhang, J. C. (2016). A study on the fractal characteristics of displacement time-series during the evolution of landslides. Geomat Nat Haz Risk, 7(5), 1631–1644. https://doi.org/10.1080/19475705.2015.1081633
  • Yi, W. (2016). Baishuihe landsldie monitoring report in Three George Reservoir Area in 2013.
  • Yin, Y., Wang, H., Gao, Y., & Li, X. (2010). Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides, 7(3), 339–349. https://doi.org/10.1007/s10346-010-0220-1
  • Zhou, C., Yin, K., Cao, Y., Intrieri, E., Ahmed, B., & Catani, F. (2018). Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides, 15(11), 2211–2225. https://doi.org/10.1007/s10346-018-1022-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.