219
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Excavation induced over pore pressure around drifts in the Callovo-Oxfordian claystone

ORCID Icon, &
Pages 2614-2629 | Received 06 Dec 2019, Accepted 13 Jun 2020, Published online: 06 Jul 2020

References

  • Armand, G., Noiret, A., Cruchaudet, M., & Conil, N. (2011). Mine by experiment performed in the Callovo-Oxfordian claystone at the Meuse Haute Marne underground research laboratory (France). Proceedings of 12th ISRM Congress, Beijing, 157–162.
  • Armand, G., Noiret, A., Zghondi, J., & Seyedi, D. M. (2013). Short- and long-term behaviors of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne underground research laboratory. Journal of Rock Mechanics and Geotechnical Engineering, 5(3), 221–230. https://doi.org/10.1016/j.jrmge.2013.05.005
  • Armand, G., Leveau, F., Nussbaum, C., de La Vaissiere, R., Noiret, A., Jaeggi, D., Landrein, P., & Righini, C. (2014). Geometry and properties of the excavation induced fractures at the Meuse/Haute-Marne URL drifts. Rock Mechanics and Rock Engineering, 47(1), 21–41. https://doi.org/10.1007/s00603-012-0339-6
  • Armand, G., Noiret, A., Morel, J., & Seyedi, D. M. (2015). Pore pressure change during the excavation of deep tunnels in the Callovo-Oxfordian claystone. Proceedings of 13th ISRM Congress, Montreal, 13(10), 13. ISBN: 978-1-926872-25-4.
  • Armand, G., Conil, N., Talandier, J., & Seyedi, D. M. (2017). Fundamental aspects of the hydromechanical behavior of the Callovo-Oxfordian claystone - from experimental investigations toward. Computers and Geotechnics, 85, 277–286. https://doi.org/10.1016/j.compgeo.2016.06.003
  • Armand, G., Bumbieler, F., Conil, N., Cararreto, S., de la Vaissière, R., Noiret, A., Seyedi, D., Talandier, J., Vu, M. N., & Zghondi, J. (2017). The Meuse\Haute-Marne underground research laboratory: Mechanical behavior of the Callovo-Oxfordian claystone. In Feng X.-T. (Ed.), Rock mechanics and engineering (Vol. 2). CRC Press.
  • Armand, G., Bumbieler, F., Conil, N., de la Vaissière, R., Bosgiraud, J. M., & Vu, M. N. (2017). Main outcomes from in situ thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in the Callovo-Oxfordian claystone. Journal of Rock Mechanics and Geotechnical Engineering, 9(3), 415–427. https://doi.org/10.1016/j.jrmge.2017.03.004
  • Bobet, A. (2011). Lined circular tunnels in elastic transversely anisotropic rock at depth. Rock Mechanics and Rock Engineering, 44(2), 149–167. https://doi.org/10.1007/s00603-010-0118-1
  • Bobet, A. (2016). Deep tunnel in transversely isotropic rock with groundwater flow. Rock Mechanics and Rock Engineering, 49(12), 4817–4832. https://doi.org/10.1007/s00603-016-1118-6
  • Coarita-Tintaya, E. D., Souley, M., Vu, M. N., & Golfier, F. (2018, May 2–4). Numerical anisotropic modelling of a deep drift ah the Meuse/Haute-Marne URL. Fourth International Symposium on Computational Geomechanics (ComGeo IV), Assisi, Italy.
  • Coarita-Tintaya, E. D., Golfier, F., Souley, M., & Vu, M. N. (2020). Nisotropic hydro-viscoplastic modelling of a drift at the Meuse/Haute-Marne URL. European Journal of Environmental and Civil Engineering (to be published).
  • Coussy, O. (2004). Poromechanics. Wiley.
  • Conil, N., Manon, V., Plúa, C., Vu, M. N., Seyedi, D., & Armand, G. (2020). In situ investigation of the THM behavior of the Callovo-Oxfordian claystone. Rock Mechanics and Rock Engineering, 53(6), 2747–2769. https://doi.org/10.1007/s00603-020-02073-8
  • de La Vaissière, R., Armand, G., & Talandier, J. (2015). Gas and water flow in an excavation-induced fracture network around an underground drift: A case study for a radioactive waste repository in clay rock. Journal of Hydrology, 521, 141–156. https://doi.org/10.1016/j.jhydrol.2014.11.067
  • Detournay, E., Cheng, A. H. D. (1993). Fundamentals of poroelasticity. In C. Fairhurst (Ed.), Comprehensive rock engineering: Principles, practice and projects. Vol. II. Analysis and design method (pp. 113–171). Pergamon Press.
  • Do, D. P., Tran, N. H., Hoxha, D., & Dang, H. L. (2017). Assessment of the influence of hydraulic and mechanical anisotropy on the fracture initiation pressure in permeable rocks using a complex potential approach. International Journal of Rock Mechanics and Mining Sciences, 100, 108–123. https://doi.org/10.1016/j.ijrmms.2017.10.020
  • Do, D. P., Tran, N. H., Hoxha, D., & Dang, H. L. (2019). Closed-form solution of stress state and stability analysis of wellbore in anisotropic permeable rocks. International Journal of Rock Mechanics and Mining Sciences, 113, 11–23. https://doi.org/10.1016/j.ijrmms.2018.11.002
  • Green, A. E., & Zerna, W. (1968). Theoretical elasticity. Dover Publications, Inc.
  • Guayacán-Carrillo, L. M., Ghabezloo, S., Sulem, J., Seyedi, D. M., & Armand, G. (2017). Effect of anisotropy and hydro-mechanical couplings on pore pressure evolution during tunnel excavation in low-permeability ground. International Journal of Rock Mechanics and Mining Sciences, 97, 1–14. https://doi.org/10.1016/j.ijrmms.2017.02.016
  • Guayacán-Carrillo, L. M., Sulem, J., Seyedi, D. M., Ghabezloo, S., & Armand, G. (2018). Size effect on the time-dependent closure of drifts in Callovo-Oxfordian claystone. International Journal of Geomechanics, 18(10), 4018128. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001213
  • Guayacán-Carrillo, L. M., Sulem, J., Ghabezloo, S., & Stefanou, I. (2019, September 13–18). Poroelastic analysis of tunnel face advance in low permeability anisotropic ground. Proceedings of 14th Int Congress on Rock Mechanics and Rock Engineering (ISRM 2019), Iguassu, Brazil (pp. 900–907).
  • Guayacán-Carrillo, L. M., Armand, G., Conil, N., de la Vaissière, R., & Djizanne, H. (2019). Impact of size excavation on time-dependent behavior of drifts excavated at the Meuse/Haute-Marne URL. Proceedings of 14th International Congress on Rock Mechanics and Rock Engineering (ISRM 2019) (pp. 686–692).
  • Hwu, C. (2010). Anisotropic elastic plates. Springer.
  • Jaeger, J. C., & Cook, N. G. W. (2007). Fundamentals of rock mechanics. New York.
  • Lekhnitskii, S. G. (1963). Theory of elasticity of an anisotropic elastic body. Holden-Day, Inc.
  • Exadaktylos, G. E., Liolios, P. A., & Stavropoulou, M. C. (2003). A semi-analytical elastic stress-displacement solution for notched circular openings in rocks. International Journal of Solids and Structures, 40(5), 1165–1193. https://doi.org/10.1016/S0020-7683(02)00646-7
  • Manica, M., Gens, A., Vaunat, J., & Ruiz, D.-F. (2017). A time-dependent anisotropic model for argillaceous rocks. Application to an underground excavation in Callovo-Oxfordian claystone. Computers and Geotechnics, 85, 341–350. https://doi.org/10.1016/j.compgeo.2016.11.004
  • Pardoen, B., Seyedi, D. M., & Collin, F. (2015). Shear banding modelling in cross-anisotropic rocks. International Journal of Solids and Structures, 72, 63–87. https://doi.org/10.1016/j.ijsolstr.2015.07.012
  • Pardoen, B., & Collin, F. (2017). Modelling the influence of strain localisation and viscosity on the behaviour of underground drifts drilled in claystone. Computers and Geotechnics, 85, 351–367. https://doi.org/10.1016/j.compgeo.2016.05.017
  • Saitta, A., Lopard, G., Petizon, T., & Armand, G. (2017). Projet Cigéo (France) – Modélisation du comportement des argilites de la galerie GRD du laboratoire souterrain de Meuse/Haute-Marne, Congrès AFTES2017, Novembre 2017, Paris.
  • Seyedi, D. M., Armand, G., & Noiret, A. (2017). “Transverse action” –A model benchmak exercise for numerical analysis of the Callovo-Oxfordian claystone hydromechanical response to excavation operations. Computers and Geotechnics, 85, 287–305. https://doi.org/10.1016/j.compgeo.2016.08.008
  • Souley, M., Armand, G., & Kazmierczak, J. B. (2017). Hydro-elasto-viscoplastic modeling of a drift at the Meuse/Haute-Marne Underground Research Laboratoratory (URL). Computers and Geotechnics, 85, 306–320. https://doi.org/10.1016/j.compgeo.2016.12.012
  • Souley, M., Vu, M. N., & Armand, G. (2020). 3D anisotropic modelling of deep drifts at the Meuse/Haute-Marne URL. 5th International Itasca Symposium, Vienna, Austria.
  • Stroh, A. N. (1962). Steady state problems in anisotropic elasticity. Journal of Mathematics and Physics, 41(1–4), 77–103. https://doi.org/10.1002/sapm196241177
  • Trivellato, E., Pouya, A., Vu, M. N., & Seyedi, D. (2019). A softening damage-based model for the failure zone around deep tunnels in quasi-brittle claystone. In Tunnels and underground cities. Engineering and innovation meet archaeology, architecture and art (pp. 4242–4251). CRC Press.
  • Trivellato, E., Pouya, A., Vu, M. N., & Seyedi, D. (2018). Modélisation en endommagement radoucissant de la zone de rupture autour des ouvrages profonds dans des roches anisotropes quasi-fragiles. Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, France, 13–15 Juin 2018.
  • Tran, N. H., Do, D. P., & Hoxha, D. (2018). A closed-form hydro-mechanical solution for deep tunnels in elastic anisotropic rock. European Journal of Environmental and Civil Engineering, 22(12), 1429–1445. https://doi.org/10.1080/19648189.2017.1285253
  • Tran-Manh, H., Sulem, J., & Subrin, D. (2015). A closed-form solution for tunnels with arbitrary cross section excavated in elastic anisotropic ground. Rock Mechanics and Rock Engineering, 48(1), 277–288. https://doi.org/10.1007/s00603-013-0542-0
  • Yao, C., Shao, J. F., Jiang, Q. H., & Zhou, C. B. (2017). Numerical study of excavation induced fractures using an extended rigid block spring method. Computers and Geotechnics, 85, 368–383. https://doi.org/10.1016/j.compgeo.2016.11.023
  • Wileveau, Y., Cornet, F. H., Desroches, J., & Blumling, P. (2007). Complete in situ stress determination in an argillite sedimentary formation. Journal of Physics and Chemistry of the Earth, 32(8–14), 866–878. https://doi.org/10.1016/j.pce.2006.03.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.