579
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A framework for coupled hydro-mechanical continuous modelling of gap-graded granular soils subjected to suffusion

, , &
Pages 2678-2699 | Received 19 Feb 2020, Accepted 10 Jul 2020, Published online: 29 Jul 2020

References

  • Bonelli, S., Marot, D. (2008). On the modelling of internal soil erosion. In The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG). p. 7.
  • Chaney, R. C., Demars, K. R., Reddi, L. N., Lee, I.-M., & Bonala, M. V. S. (2000). Comparison of internal and surface erosion using flow pump tests on a sand-kaolinite mixture. Geotechnical Testing Journal, 23(1), 116–122. https://doi.org/10.1520/GTJ11129J
  • Chang, C., & Hicher, P.-Y. (2005). An elasto-plastic model for granular materials with microstructural consideration. International Journal of Solids and Structures, 42(14), 4258–4277. https://doi.org/10.1016/j.ijsolstr.2004.09.021
  • Chang, D., & Zhang, L. (2011). A stress-controlled erosion apparatus for studying internal erosion in soils. Geotechnical Testing Journal, 34(6),579-589.
  • Chang, C. S., & Deng, Y. (2018). A nonlinear packing model for multi-sized particle mixtures. Powder Technology, 336, 449–464. https://doi.org/10.1016/j.powtec.2018.06.008
  • Chang, C. S., & Yin, Z.-Y. (2010). Micromechanical modeling for inherent anisotropy in granular materials. Journal of Engineering Mechanics, 136(7), 830–839. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000125
  • Chang, C. S., & Yin, Z.-Y. (2011). Micromechanical modeling for behavior of silty sand with influence of fine content. International Journal of Solids and Structures, 48(19), 2655–2667. https://doi.org/10.1016/j.ijsolstr.2011.05.014
  • Cividini, A., Bonomi, S., Vignati, G. C., & Gioda, G. (2009). Seepage-induced erosion in granular soil and consequent settlements. International Journal of Geomechanics, 9(4), 187–194. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187)
  • Cividini, A., & Gioda, G. (2004). Finite-element approach to the erosion and transport of fine particles in granular soils. International Journal of Geomechanics, 4(3), 191–198. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(191)
  • Crosta, G., & Prisco, C. (1999). On slope instability induced by seepage erosion. Canadian Geotechnical Journal, 36(6), 1056–1073. https://doi.org/10.1139/t99-062
  • Darve, F. (1990). The expression of rheological laws in incremental form and the main classes of constitutive equations. In Felix Darve (Ed.), Geomaterials: Constitutive equations and modelling (pp. 139–164). CRC Press.
  • Darve, F., & Labanieh, S. (1982). Incremental constitutive law for sands and clays: simulations of monotonic and cyclic tests. International Journal for Numerical and Analytical Methods in Geomechanics, 6(2), 243–275. https://doi.org/10.1002/nag.1610060209
  • de Boer, R. (2000). Contemporary progress in porous media theory. Applied Mechanics Reviews, 53(12), 323–370. https://doi.org/10.1115/1.3097333
  • Duncan, J. M., & Chang, C.-Y. (1970). Nonlinear analysis of stress and strain in soils. Journal of Soil Mechanics & Foundations Division, 96(5), 1629–1653.
  • Fell, R., Wan, C. F., Cyganiewicz, J., & Foster, M. (2003). Time for development of internal erosion and piping in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 129(4), 307–314. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307)
  • Gajo, A., & Wood, M. (1999). Severn–Trent sand: A kinematic-hardening constitutive model: The q–p formulation. Géotechnique, 49(5), 595–614. https://doi.org/10.1680/geot.1999.49.5.595
  • Gombert, P., Orsat, J., Mathon, D., Alboresha, R., Al Heib, M., & Deck, O. (2015). Role des effondrements karstiques sur les desordres survenus sur les digues de Loire dans le Val D’Orleans (France). Bulletin of Engineering Geology and the Environment, 74(1), 125–140. https://doi.org/10.1007/s10064-014-0594-8
  • Hibbitt, Karlsson, Sorensen. (2001). ABAQUS/standard user’s manual. Hibbitt, Karlsson & Sorensen.
  • Hicher, P.-Y. (2013). Modelling the impact of particle removal on granular material behaviour. Géotechnique, 63(2), 118–128. https://doi.org/10.1680/geot.11.P.020
  • Hosn, R. A., Sibille, L., Benahmed, N., & Chareyre, B. (2018). A discrete numerical model involving partial fluid-solid coupling to describe suffusion effects in soils. Computers and Geotechnics, 95, 30–39. https://doi.org/10.1016/j.compgeo.2017.11.006
  • Hu, W., Hicher, P.-Y., Scaringi, G., Xu, Q., Van Asch, T., & Wang, G. (2018). Seismic precursor to instability induced by internal erosion in loose granular slopes. Géotechnique, 68(11), 913–989. https://doi.org/10.1680/jgeot.17.P.079
  • Jefferies, M. (1993). Nor-Sand: a simle critical state model for sand. Géotechnique, 43(1), 91–103. https://doi.org/10.1680/geot.1993.43.1.91
  • Jin, Y.-F., Wu, Z.-X., Yin, Z.-Y., & Shen, J. S. (2017). Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotechnica, 12(6), 1329–1351. https://doi.org/10.1007/s11440-017-0586-5
  • Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., & Hicher, P.-Y. (2016). Selection of sand models and identification of parameters using an enhanced genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 40(8), 1219–1240. https://doi.org/10.1002/nag.2487
  • Jin, Y.-F., Yin, Z.-Y., Wu, Z.-X., & Zhou, W.-H. (2018). Identifying parameters of easily crushable sand and application to offshore pile driving. Ocean Engineering, 154, 416–429. https://doi.org/10.1016/j.oceaneng.2018.01.023
  • Ke, L., & Takahashi, A. (2014a). Triaxial erosion test for evaluation of mechanical consequences of internal erosion. Geotechnical Testing Journal, 37(2), 20130049–20130364. https://doi.org/10.1520/GTJ20130049
  • Ke, L., & Takahashi, A. (2014b). Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils and Foundations, 54(4), 713–730. https://doi.org/10.1016/j.sandf.2014.06.024
  • Kenney, T., & Lau, D. (1985). Internal stability of granular filters. Canadian Geotechnical Journal, 22(2), 215–225. https://doi.org/10.1139/t85-029
  • Khalil, T., Saiyouri, N., Muresan, B., & Hicher, P. Y. (2013). Internal erosion of chemically reinforced granular materials: A mathematical modeling approach. International Journal for Numerical and Analytical Methods in Geomechanics, 37(5), 491–502. https://doi.org/10.1002/nag.1108
  • Kolymbas, D. (1991). An outline of hypoplasticity. Archive of Applied Mechanics, 61(3), 143–151.
  • Li, X.-S., & Wang, Y. (1998). Linear representation of steady-state line for sand. Journal of Geotechnical and Geoenvironmental Engineering, 124(12), 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215)
  • Liu, X., Qu, S., Chen, R., & Chen, S. (2018). Development of a two-dimensional fractal model for analyzing the particle size distribution of geomaterials. Journal of Materials in Civil Engineering, 30(8), 04018175. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002365
  • Liu, X., Qu, S., & Huang, J. (2019). Relationship between physical properties and particle-size distribution of geomaterials. Construction and Building Materials, 222, 312–318. https://doi.org/10.1016/j.conbuildmat.2019.06.127
  • Lominé, F., Scholtès, L., Sibille, L., & Poullain, P. (2013). Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: Application to piping erosion. International Journal for Numerical and Analytical Methods in Geomechanics, 37(6), 577–596. https://doi.org/10.1002/nag.1109
  • Mansouri, M., El Youssoufi, M. S., & Nicot, F. (2017). Numerical simulation of the quicksand phenomenon by a 3D coupled discrete element‐lattice Boltzmann hydromechanical model. International Journal for Numerical and Analytical Methods in Geomechanics, 41(3), 338–358. https://doi.org/10.1002/nag.2556
  • Mašín, D. (2005). A hypoplastic constitutive model for clays. International Journal for Numerical and Analytical Methods in Geomechanics, 29(4), 311–336.
  • Mašín, D., & Khalili, N. (2012). A thermo‐mechanical model for variably saturated soils based on hypoplasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 36(12), 1461–1485. https://doi.org/10.1002/nag.1058
  • Minh, N., & Cheng, Y. (2013). A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Géotechnique, 63(1), 44–53. https://doi.org/10.1680/geot.10.P.058
  • Miura, N., Murata, H., & Yasufuku, N. (1984). Stress-strain characteristics of sand in a particle-crushing region. Soils and Foundations, 24(1), 77–89. https://doi.org/10.3208/sandf1972.24.77
  • Muir Wood, D. (2007). The magic of sands—The 20th Bjerrum Lecture presented in Oslo, 25 November 2005. Canadian Geotechnical Journal, 44(11), 1329–1350. https://doi.org/10.1139/T07-060
  • Muir Wood, D., Maeda, K., & Nukudani, E. (2010). Modelling mechanical consequences of erosion. Géotechnique, 60(6), 447–457. https://doi.org/10.1680/geot.2010.60.6.447
  • Nicot, F., & Darve, F. (2011). The H-microdirectional model: Accounting for a mesoscopic scale. Mechanics of Materials, 43(12), 918–929. https://doi.org/10.1016/j.mechmat.2011.07.006
  • Niemunis, A., & Herle, I. (1997). Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, 2(4), 279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
  • Papadopoulou, A., & Tika, T. (2008). The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils and Foundations, 48(5), 713–725. https://doi.org/10.3208/sandf.48.713
  • Papamichos, E., Vardoulakis, I., Tronvoll, J., & Skjaerstein, A. (2001). Volumetric sand production model and experiment. International Journal for Numerical and Analytical Methods in Geomechanics, 25(8), 789–808. https://doi.org/10.1002/nag.154
  • Reboul, N., Vincens, E., & Cambou, B. (2008). A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres. Granular Matter, 10(6), 457–468. https://doi.org/10.1007/s10035-008-0111-5
  • Reddi, L. Lee, I., & Bonala, M. (2000). Comparison of Internal and Surface Erosion Using Flow Pump Tests on a Sand-Kaolinite Mixture. Geotechnical Testing Journal 23(1), 116–122. https://doi.org/10.1520/GTJ11129J
  • Revil, A., & Cathles, L. (1999). Permeability of shaly sands. Water Resources Research, 35(3), 651–662. https://doi.org/10.1029/98WR02700
  • Rochim, A., Marot, D., Sibille, L., & Thao Le, V. (2017). Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(7), 04017025. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001673
  • Rönnqvist, H., Fannin, J., & Viklander, P. (2014). On the use of empirical methods for assessment of filters in embankment dams. Géotechnique Letters, 4(4), 272–282. https://doi.org/10.1680/geolett.14.00055
  • Sari, H., Chareyre, B., Catalano, E., Philippe, P., & Vincens, E. (2011). Investigation of internal erosion processes using a coupled dem-fluid method [Paper presentation]. In E. Oate & D. R. J. Owen (Eds), Particles 2011 II International Conference on Particle-Based Methods, Barcelona (pp. 1–11).
  • Schaufler, A., Becker, C., & Steeb, H. (2013). Infiltration processes in cohesionless soils. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 93(2-3), 138–146. https://doi.org/10.1002/zamm.201200047
  • Scholtès, L., Hicher, P.-Y., & Sibille, L. (2010). Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Mécanique, 338(10-11), 627–638. https://doi.org/10.1016/j.crme.2010.10.003
  • Shen, C., Liu, S., Xu, S., & Wang, L. (2019). Rapid estimation of maximum and minimum void ratios of granular soils. Acta Geotechnica, 14(4), 991–1001. https://doi.org/10.1007/s11440-018-0714-x
  • Sibille, L., Lominé, F., Poullain, P., Sail, Y., & Marot, D. (2015). Internal erosion in granular media: Direct numerical simulations and energy interpretation. Hydrological Processes, 29(9), 2149–2163. https://doi.org/10.1002/hyp.10351
  • Stavropoulou, M., Papanastasiou, P., & Vardoulakis, I. (1998). Coupled wellbore erosion and stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 22(9), 749–769. https://doi.org/10.1002/(SICI)1096-9853(199809)22:9<749::AID-NAG944>3.0.CO;2-K
  • Steeb, H., & Diebels, S. (2003). A thermodynamic-consistent model describing growth and remodeling phenomena. Computational Materials Science, 28(3-4), 597–607. https://doi.org/10.1016/j.commatsci.2003.08.016
  • Steeb, H., Diebels, S., & Vardoulakis, I. (2007). Modeling internal erosion in porous media [Paper presentation]. In Computer Applications in Geotechnical Engineering (pp. 1–10). https://doi.org/10.1061/40901(220)16
  • Sterpi, D. (2003). Effects of the erosion and transport of fine particles due to seepage flow. International Journal of Geomechanics, 3(1), 111–122. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:1(111)
  • Taiebat, M., & Dafalias, Y. F. (2008). SANISAND: Simple anisotropic sand plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics, 32(8), 915–948. https://doi.org/10.1002/nag.651
  • Thevanayagam, S., Shenthan, T., Mohan, S., & Liang, J. (2002). Undrained fragility of clean sands, silty sands, and sandy silts. Journal of Geotechnical and Geoenvironmental Engineering, 128(10), 849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  • Uzuoka, R., & Borja, R. I. (2012). Dynamics of unsaturated poroelastic solids at finite strain. International Journal for Numerical and Analytical Methods in Geomechanics, 36(13), 1535–1573. https://doi.org/10.1002/nag.1061
  • Uzuoka, R., Ichiyama, T., Mori, T., Kazama, M. (2012). Hydro-mechanical analysis of internal erosion with mass exchange between solid and water. In 6th International Conference on Scour and Erosion (pp. 655–662).
  • Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  • Vardoulakis, I., Stavropoulou, M., & Papanastasiou, P. (1996). Hydro-mechanical aspects of the sand production problem. Transport in Porous Media, 22(2), 225–244. https://doi.org/10.1007/BF01143517
  • Vermeer, P. (1978). A double hardening model for sand. Géotechnique, 28(4), 413–433. https://doi.org/10.1680/geot.1978.28.4.413
  • Wan, C. F., & Fell, R. (2004). Investigation of rate of erosion of soils in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 373–380. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
  • Wan, R., & Pouragha, M. (2015). Fabric and connectivity as field descriptors for deformations in granular media. Continuum Mechanics and Thermodynamics, 27(1-2), 243–259. https://doi.org/10.1007/s00161-014-0370-9
  • Wan, R. G., & Guo, P. J. (1998). A simple constitutive model for granular soils: Modified stress-dilatancy approach. Computers and Geotechnics, 22(2), 109–133. https://doi.org/10.1016/S0266-352X(98)00004-4
  • Wu, W., Bauer, E., & Kolymbas, D. (1996). Hypoplastic constitutive model with critical state for granular materials. Mechanics of Materials, 23(1), 45–69. https://doi.org/10.1016/0167-6636(96)00006-3
  • Wu, W., & Kolymbas, D. (2000). Hypoplasticity then and now. In: Kolymbas D. (eds) Constitutive Modelling of Granular Materials. Springer, Berlin, Heidelberg.
  • Wu, Z.-X., Yin, Z.-Y., Jin, Y.-F., & Geng, X.-Y. (2019). A straightforward procedure of parameters determination for sand: A bridge from critical state based constitutive modelling to finite element analysis. European Journal of Environmental and Civil Engineering, 23(12), 1444–1466. https://doi.org/10.1080/19648189.2017.1353442
  • Xu, Y., & Zhang, L. (2009). Breaching parameters for earth and rockfill dams. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1957–1970. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000162
  • Yang, J., Yin, Z. Y., Laouafa, F., & Hicher, P. Y. (2019a). Internal erosion in dike‐on‐foundation modeled by a coupled hydromechanical approach. International Journal for Numerical and Analytical Methods in Geomechanics, 43(3), 663–683. https://doi.org/10.1002/nag.2877
  • Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2019b). Hydromechanical modeling of granular soils considering internal erosion. Canadian Geotechnical Journal, 57(2), 157–172. https://doi.org/10.1139/cgj-2018-0653
  • Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2019c). Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content. Computers and Geotechnics, 111, 157–171. https://doi.org/10.1016/j.compgeo.2019.03.011
  • Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2019d). Modeling coupled erosion and filtration of fine particles in granular media. Acta Geotechnica, 14(6), 1615–1627. https://doi.org/10.1007/s11440-019-00808-8
  • Yang, J., Jin, Y.-F., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2020). Identifying the parameters of a hydro-mechanical model for internal erosion occurring in granular soils by using an enhanced backtracking search algorithm. European Journal of Environmental and Civil Engineering, 1–20. https://doi.org/10.1080/19648189.2020.1752809
  • Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2020). Three-dimensional hydromechanical modeling of internal erosion in dike-on-foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 44(8), 1200–1218. https://doi.org/10.1002/nag.3057
  • Yang, S. L., Sandven, R., & Grande, L. (2006). Instability of sand–silt mixtures. Soil Dynamics and Earthquake Engineering, 26(2-4), 183–190. https://doi.org/10.1016/j.soildyn.2004.11.027
  • Yao, Y., Hou, W., & Zhou, A. (2009). UH model: Three-dimensional unified hardening model for overconsolidated clays. Géotechnique, 59(5), 451–469. https://doi.org/10.1680/geot.2007.00029
  • Yao, Y.-P., Kong, L.-M., Zhou, A.-N., & Yin, J.-H. (2015). Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays. Journal of Engineering Mechanics, 141(6), 04014162. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000885
  • Yao, Y., Sun, D., & Luo, T. (2004). A critical state model for sands dependent on stress and density. International Journal for Numerical and Analytical Methods in Geomechanics, 28(4), 323–337. https://doi.org/10.1002/nag.340
  • Yao, Y., Sun, D., & Matsuoka, H. (2008). A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Computers and Geotechnics, 35(2), 210–222. https://doi.org/10.1016/j.compgeo.2007.04.003
  • Yin, Z.-Y., Chang, C. S., & Hicher, P.-Y. (2010). Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. International Journal of Solids and Structures, 47(14-15), 1933–1951. https://doi.org/10.1016/j.ijsolstr.2010.03.028
  • Yin, Z.-Y., Huang, H.-W., & Hicher, P.-Y. (2016). Elastoplastic modeling of sand–silt mixtures. Soils and Foundations, 56(3), 520–532. https://doi.org/10.1016/j.sandf.2016.04.017
  • Yin, Z.-Y., Wu, Z.-X., & Hicher, P.-Y. (2018). Modeling Monotonic and Cyclic Behavior of Granular Materials by Exponential Constitutive Function. Journal of Engineering Mechanics, 144(4), 04018014. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001437
  • Yin, Z.-Y., Zhao, J., & Hicher, P.-Y. (2014). A micromechanics-based model for sand-silt mixtures. International Journal of Solids and Structures, 51(6), 1350–1363. https://doi.org/10.1016/j.ijsolstr.2013.12.027
  • Yu, A., & Standish, N. (1987). Porosity calculations of multi-component mixtures of spherical particles. Powder Technology, 52(3), 233–241. https://doi.org/10.1016/0032-5910(87)80110-9
  • Yu, A., & Standish, N. (1988). An analytical—parametric theory of the random packing of particles. Powder Technology, 55(3), 171–186. https://doi.org/10.1016/0032-5910(88)80101-3
  • Yu, H. (1998). CASM: A unified state parameter model for clay and sand. International Journal for Numerical and Analytical Methods in Geomechanics, 22(8), 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:8<621::AID-NAG937>3.0.CO;2-8
  • Zhang, F., Li, M., Peng, M., Chen, C., & Zhang, L. (2019). Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotechnica, 14(2), 417–487. https://doi.org/10.1007/s11440-018-0655-4
  • Zhang, L., & Chen, Q. (2006). Seepage failure mechanism of the Gouhou rockfill dam during reservoir water infiltration. Soils and Foundations, 46(5), 557–568. https://doi.org/10.3208/sandf.46.557
  • Zhang, L., Xu, Y., & Jia, J. (2009). Analysis of earth dam failures: A database approach. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 3(3), 184–189. https://doi.org/10.1080/17499510902831759
  • Zhang, X., Wong, H., Leo, C., Bui, T., Wang, J., Sun, W., & Huang, Z. (2013). A thermodynamics-based model on the internal erosion of earth structures. Geotechnical and Geological Engineering, 31(2), 479–492. https://doi.org/10.1007/s10706-012-9600-8
  • Zhao, J., & Shan, T. (2013). Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics. Powder Technology, 239, 248–258. https://doi.org/10.1016/j.powtec.2013.02.003
  • Zlatović, S., Ishihara, K. (1995). On the influence of nonplastic fines on residual strength. In First International Conference on Earthquake Geotechnical Engineering (pp. 239–244).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.