451
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Properties of geopolymer mortars derived from ground calcined perlite and NaOH solution

&
Pages 2907-2921 | Received 25 May 2020, Accepted 17 Jan 2021, Published online: 02 Feb 2021

References

  • Almalkawi, A. T., Balchandra, A., & Soroushian, P. (2019). Potential of using industrial wastes for production of geopolymer binder as green construction materials. Construction and Building Materials, 220, 516–524. https://doi.org/10.1016/j.conbuildmat.2019.06.054
  • Arslan, A. A., Uysal, M., Yılmaz, A., Al-Mashhadani, M. M., Canpolat, O., Şahin, F., & Aygörmez, Y. (2019). Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites. Construction and Building Materials, 225, 909–926. https://doi.org/10.1016/j.conbuildmat.2019.07.235
  • Aseniero, J. P. J., Opiso, E. M., Banda, M. H. T., & Tabelin, C. B. (2019). Potential utilization of artisanal gold-mine tailings as geopolymeric source material: preliminary investigation. SN Applied Sciences, 1(1), 35. https://doi.org/10.1007/s42452-018-0045-4
  • ASTM C 597-09 (2009). Standard test method for pulse velocity through concrete. ASTM International.
  • Atabey, İİ., Karahan, O., Bilim, C., & Atiş, C. D. (2020). The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Construction and Building Materials, 264, 120268. https://doi.org/10.1016/j.conbuildmat.2020.120268
  • Çelik, A. G., Kılıç, A. M., & Çakal, G. O. (2013). Expanded perlite aggregate characterization for use as a lightweight construction raw material. Physicochemical Problems of Mineral Processing, 49(2), 689–700. https://doi.org/10.5277/ppmp130227
  • Çelikten, S., & Atabey, İ. (2021). The effects of water content and thermal curing time on physical and mechanical properties of waste basalt powder based geopolymer mortars. Nigde Omer Halisdemir University Journal of Engineering Sciences, 10(1), 328-332. https://doi.org/10.28948/ngumuh.836998
  • Celikten, S., & Işıkdağ, B. (2020). Strength development of ground perlite-based geopolymer mortars. Advances in Concrete Construction, 9(3), 227–234. https://doi.org/10.12989/acc.2020.9.3.227
  • Çelikten, S., Sarıdemir, M., & Deneme, İÖ. (2019). Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50–61. https://doi.org/10.1016/j.conbuildmat.2019.05.055
  • CEN EN 196-1 (2005). Methods of testing cement-Part 1: Determination of strength. The European Committee for Standardization.
  • Das, S. K., Mishra, J., & Mustakim, S. M. (2018). Rice husk ash as a potential source material for geopolymer concrete: A review. International Journal of Applied Engineering Research, 13(7), 81–84.
  • Davidovits, J. (1991). Geopolymers—Inorganic polymeric new materials. Journal of Thermal Analysis and Analysis, 37(8), 1633–1656. https://doi.org/10.1007/BF01912193
  • Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design (1980–2015), 62, 32–39. https://doi.org/10.1016/j.matdes.2014.05.001
  • Demirboğa, R., & Gül, R. (2003). The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cement and Concrete Research, 33(5), 723–727. https://doi.org/10.1016/S0008-8846(02)01032-3
  • Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & Van Deventer, J. S. (2005a). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1-3), 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060
  • Duxson, P., Provis, J. L., Lukey, G. C., Separovic, F., & van Deventer, J. S. (2005b). 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir: The ACS Journal of Surfaces and Colloids, 21(7), 3028–3036. https://doi.org/10.1021/la047336x
  • Duxson, P., Provis, J. L., Lukey, G. C., & Van Deventer, J. S. (2007). The role of inorganic polymer technology in the development of green concrete. Cement and Concrete Research, 37 (12), 1590–1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  • Erdoğan, S. T. (2011). Use of perlite to produce geopolymers. Paper presented at the Proceedings, 31st Cement and Concrete Science Conference: Novel Developments and Innovation in Cementitious Materials, Institute of Materials, Minerals, and Mining, Imperial College London, UK.
  • Erdoğan, S. T. (2014). Properties of ground perlite geopolymer mortars. Journal of Materials in Civil Engineering, 27(7), 04014210–1–04014210-10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001172
  • Fan, F., Li, Z., Xu, G., Peng, H., & Cai, C. S. (2018). Mechanical and thermal properties of fly ash based geopolymers. Construction and Building Materials, 160, 66–81. https://doi.org/10.1016/j.conbuildmat.2017.11.023
  • Görhan, G., & Kürklü, G. (2014). The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering, 58, 371–377. https://doi.org/10.1016/j.compositesb.2013.10.082
  • He, J., Jie, Y., Zhang, J., Yu, Y., & Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement and Concrete Composites, 37, 108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010
  • Hu, M., Zhu, X., & Long, F. (2009). Alkali-activated fly ash-based geopolymers with zeolite or bentonite as additives. Cement and Concrete Composites, 31(10), 762–768. https://doi.org/10.1016/j.cemconcomp.2009.07.006
  • Işıkdag, B. (2015). Characterization of lightweight ferrocement panels containing expanded perlite-based mortar. Construction and Building Materials, 81, 15–23. https://doi.org/10.1016/j.conbuildmat.2015.02.009
  • Jeon, D., Jun, Y., Jeong, Y., & Oh, J. E. (2015). Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system. Cement and Concrete Research, 67, 215–225. https://doi.org/10.1016/j.cemconres.2014.10.001
  • Karaiskos, G., Deraemaeker, A., Aggelis, D. G., & Van Hemelrijck, D. (2015). Monitoring of concrete structures using the ultrasonic pulse velocity method. Smart Materials and Structures, 24(11), 113001. https://doi.org/10.1088/0964-1726/24/11/113001
  • Komljenović, M., Baščarević, Z., & Bradić, V. (2010). Mechanical and microstructural properties of alkali-activated fly ash geopolymers. Journal of Hazardous Materials, 181(1–3), 35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064
  • Liu, Y., Shi, C., Zhang, Z., & Li, N. (2019). An overview on the reuse of waste glasses in alkali-activated materials. Resources, Conservation & Recycling, 144, 297–309. https://doi.org/10.1016/j.resconrec.2019.02.007
  • Nagaraj, V. K., & Venkatesh Babu, D. L. (2018). Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature. Journal of Building Engineering, 20, 137–155. https://doi.org/10.1016/j.jobe.2018.07.005
  • Nazari, A., Bagheri, A., & Riahi, S. (2011). Properties of geopolymer with seeded fly ash and rice husk bark ash. Materials Science and Engineering: A, 528(24), 7395–7401. https://doi.org/10.1016/j.msea.2011.06.027
  • Nematollahi, B., & Sanjayan, J. (2014). Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Materials & Design, 57, 667–672. https://doi.org/10.1016/j.matdes.2014.01.064
  • Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2015). Mechanical properties of alkali activated flyash/Kaolin based geopolymer concrete. Construction and Building Materials, 98, 685–691. https://doi.org/10.1016/j.conbuildmat.2015.08.009
  • Panias, D., Giannopoulou, I. P., & Perraki, T. (2007). Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301 (1–3), 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064
  • Papa, E., Medri, V., Murri, A. N., Laghi, L., Aloysio, G. D., Bandini, S., & Landi, E. (2018). Characterization of alkali bonded expanded perlite. Construction and Building Materials, 191, 1139–1147. https://doi.org/10.1016/j.conbuildmat.2018.10.086
  • Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065
  • Posi, P., Teerachanwit, C., Tanutong, C., Limkamoltip, S., Lertnimoolchai, S., Sata, V., & Chindaprasirt, P. (2013). Lightweight geopolymer concrete containing aggregate from recycle lightweight block. Materials & Design (1980–2015) 52, 580–586. https://doi.org/10.1016/j.matdes.2013.06.001
  • Provis, J. L. (2014). Geopolymers and other alkali activated materials: why, how, and what? Materials and Structures, 47 (1–2), 11–25. https://doi.org/10.1617/s11527-013-0211-5
  • Provis, J. L., & Bernal, S. A. (2014). Geopolymers and related alkali-activated materials. Annual Review of Materials Research, 44(1), 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515
  • Provis, J. L., Lukey, G. C., & van Deventer, J. S. (2005). Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chemistry of Materials, 17(12), 3075–3085. https://doi.org/10.1021/cm050230i
  • Ranjbar, N., Mehrali, M., Alengaram, U. J., Metselaar, H. S. C., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Construction and Building Materials, 65, 114–121. https://doi.org/10.1016/j.conbuildmat.2014.04.064
  • Rashad, A. M. (2013a). A comprehensive overview about the influence of different additives on the properties of alkali-activated slag – A guide for Civil Engineer. Construction and Building Materials, 47, 29–55. https://doi.org/10.1016/j.conbuildmat.2013.04.011
  • Rashad, A. M. (2013b). Alkali-activated metakaolin: A short guide for civil Engineer – An overview. Construction and Building Materials, 41, 751–765. https://doi.org/10.1016/j.conbuildmat.2012.12.030
  • Reddy, M. S., Dinakar, P., & Rao, B. H. (2016). A review of the influence of source material’s oxide composition on the compressive strength of geopolymer concrete. Microporous and Mesoporous Materials, 234, 12–23. https://doi.org/10.1016/j.micromeso.2016.07.005
  • Sarıdemir, M. (2016). The strength properties of alkali-activated ground diatomite mortars. Nigde Omer Halisdemir University Journal of Engineering Sciences, 5(2), 124–134. https://doi.org/10.28948/ngumuh.294970
  • Sathonsaowaphak, A., Chindaprasirt, P., & Pimraksa, K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 168(1), 44–50. https://doi.org/10.1016/j.jhazmat.2009.01.120
  • Sengul, O., Azizi, S., Karaosmanoglu, F., & Tasdemir, M. A. (2011). Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy and Buildings, 43(2–3), 671–676. https://doi.org/10.1016/j.enbuild.2010.11.008
  • Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90(6), 2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018
  • Taxiarchou, M., Panias, D., Panagiotopoulou, C., Karalis, A., & Dedeloudis, C. (2012). Study on the suitability of volcanic amorphous aluminosilicate rocks (perlite) for the synthesis of geopolymer-based concrete. Proc., ASTM Int. Symp. on Geopolymer Binder Systems., CA.
  • Topçu, İ. B., & Işıkdağ, B. (2007). Manufacture of high heat conductivity resistant clay bricks containing perlite. Building and Environment, 42(10), 3540–3546. https://doi.org/10.1016/j.buildenv.2006.10.016
  • Topçu, İ. B., & Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1–3), 34–38. https://doi.org/10.1016/j.jmatprotec.2007.10.052
  • TS EN 196-1 (2009). Methods of testing cement-Part 1: ‘Determination of strength’. Turkish Standards Institution.
  • Vance, E. R., Perera, D. S., Imperia, P., Cassidy, D. J., Davis, J., & Gourley, J. T. (2009). Perlite waste as a precursor for geopolymer formation. Journal of the Australian Ceramic Society, 45(1), 44–49.
  • Vaou, V., & Panias, D. (2010). Thermal insulating foamy geopolymers from perlite. Minerals Engineering, 23(14), 1146–1151. https://doi.org/10.1016/j.mineng.2010.07.015
  • Wang, W. C., Wang, H. Y., & Lo, M. H. (2015). The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration. Construction and Building Materials, 84, 224–229. https://doi.org/10.1016/j.conbuildmat.2014.09.059
  • Yang, K. H., & Song, J. K. (2009). Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide. Journal of Materials in Civil Engineering, 21(3), 119–127. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:3(119)
  • Yurt, Ü. (2020). An experimental study on fracture energy of alkali activated slag composites incorporated different fibers. Journal of Building Engineering, 32, 101519. https://doi.org/10.1016/j.jobe.2020.101519

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.