402
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Bearing capacity-relative density behavior of circular footings resting on geocell-reinforced sand

, &
Pages 5088-5112 | Received 24 Aug 2020, Accepted 29 Jan 2021, Published online: 10 Feb 2021

References

  • AASHTO. (1998). Bridge design specifications.
  • Aboobacker, F. M. P., Saride, S., & Madhira, M. R. (2015). Numerical modelling of strip footing on geocell-reinforced beds. Proceedings of the Institution of Civil Engineers - Ground Improvement, 168(3), 194–205. https://doi.org/10.1680/grim.13.00015
  • Adams, M. T., & Collin, J. G. (1997). Large model spread footing load tests on geosynthetic reinforced soil foundations. Journal of Geotechnical and Geoenvironmental Engineering, 123(1), 66–72. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(66)
  • Al-Qadi, I. L., & Hughes, J. J. (2000). Field evaluation of geocell use in flexible pavements. Transportation Research Record: Journal of the Transportation Research Board, 1709(1), 26–35. https://doi.org/10.3141/1709-04
  • Amar, S., Baguelin, F., Canépa, Y., & Frank, R. (1994). Experimental study of the settlement of shallow foundations. Vertical and Horizontal Deformations of Foundations and Embankments, ASCE, 40(2), 1602–1610.
  • ASTM D2487. (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International.
  • ASTM D4253. (2016). Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International.
  • ASTM D4254. (2016). Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International.
  • ASTM D4885. (2011). Standard test method for determining performance strength of geomembranes by wide strip tensile method. ASTM international.
  • ASTM D7181. (2011). Method for consolidated drained triaxial compression test for soils. ASTM International.
  • Avesani Neto, J. O. (2019). Application of the two-layer system theory to calculate the settlements and vertical stress propagation in soil reinforcement with geocell. Geotextiles and Geomembranes, 47(1), 32–41. https://doi.org/10.1016/j.geotexmem.2018.09.003
  • Avesani Neto, J. O., Bueno, B., & Futai, M. A. (2013). A bearing capacity calculation method for soil reinforced with a geocell. Geosynthetics International, 20(3), 129–142. https://doi.org/10.1680/gein.13.00007
  • Bathurst, R. J., & Knight, M. A. (1998). Analysis of geocell reinforced-soil covers over large span conduits. Computers and Geotechnics, 22(3–4), 205–219. https://doi.org/10.1016/S0266-352X(98)00008-1
  • Bhatra, S., & Maheshwari, P. (2019). Double beam model for reinforced tensionless foundations under moving loads. KSCE Journal of Civil Engineering, 23(4), 1600–1609. https://doi.org/10.1007/s12205-019-1609-6
  • Biabani, M. M., Indraratna, B., & Ngo, N. T. (2016). Modelling of geocell-reinforced subballast subjected to cyclic loading. Geotextiles and Geomembranes, 44(4), 489–503. https://doi.org/10.1016/j.geotexmem.2016.02.001
  • Binquet, J., & Lee, L. K. (1975). Bearing capacity tests on reinforced earth slabs. Journal of Geotechnical Engineering Divison, ASCE, 101(12), 1241–1255.
  • Biswas, A., Murali Krishna, A., & Dash, S. K. (2013). Influence of subgrade strength on the performance of geocell-reinforced foundation systems. Geosynthetics International, 20(6), 376–388. https://doi.org/10.1680/gein.13.00025
  • Boussinesq, J. (1885). Application des potentiels a l’étude de l’équilibre et du mouvement des solides élastiques. Albert Blanchard, Paris (in French). [Reprinted, 1969 with an introduction by A. Caquot, Gauthier-Villars, Paris.].
  • Bush, D. I., Jenner, C. G., & Bassett, R. H. (1990). The design and construction of geocell foundation mattresses supporting embankments over soft ground. Geotextiles and Geomembranes, 9(1), 83–98. https://doi.org/10.1016/0266-1144(90)90006-X
  • Cancelli, A., & Montanelli, F. (1999). In-ground test for geosynthetic reinforced flexible paved roads. Geosynthetics Conference. Boston, USA, Vol. 2, pp. 863–878.
  • Cowland, J. W., & Wong, S. C. K. (1993). Performance of a road embankment on soft clay supported on a geocell Mattress foundation. Geotextiles and Geomembranes, 12(8), 687–705. https://doi.org/10.1016/0266-1144(93)90046-Q
  • Dash, S. K. (2010). Influence of relative density of soil on performance of geocell-reinforced sand foundations. Journal of Materials in Civil Engineering, 22(5), 533–538. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000040
  • Dash, S. K. (2012). Effect of geocell type on load-carrying mechanisms of geocell-reinforced sand foundations. International Journal of Geomechanics, 12(5), 537–548. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000162
  • Dash, S. K., Krishnaswamy, N. R., & Rajagopal, K. (2001a). Bearing capacity of strip footings supported on geocell-reinforced sand. Geotextiles and Geomembranes, 19(4), 235–256. https://doi.org/10.1016/S0266-1144(01)00006-1
  • Dash, S. K., Rajagopal, K., & Krishnaswamy, N. R. (2001b). Strip footing on geocell reinforced sand beds with additional planar reinforcement. Geotextiles and Geomembranes, 19(8), 529–538. https://doi.org/10.1016/S0266-1144(01)00022-X
  • Dash, S. K., Rajagopal, K., & Krishnaswamy, N. R. (2004). Performance of different geosynthetic reinforcement material in sand foundations. Geosynthetics International, 11(1), 35–42. https://doi.org/10.1680/gein.2004.11.1.35
  • Dash, S. K., Rajagopal, K., & Krishnaswamy, N. R. (2007). Behaviour of geocell-reinforced sand beds under strip loading. Canadian Geotechnical Journal, 44(7), 905–916. https://doi.org/10.1139/t07-035
  • Dash, S. K., Sireesh, S., & Sitharam, T. G. (2003a). Model studies on circular footing supported on geocell reinforced sand underlain by soft clay. Geotextiles and Geomembranes, 21(4), 197–219. https://doi.org/10.1016/S0266-1144(03)00017-7
  • Dash, S. K., Sireesh, S., & Sitharam, T. G. (2003b). Behaviour of geocell-reinforced sand beds under circular footing. Proceedings of the Institution of Civil Engineers - Ground Improvement, 7(3), 111–115. https://doi.org/10.1680/grim.2003.7.3.111
  • El Sawwaf, M., & Nazer, A. (2005). Behavior of circular footings resting on confined granular soil. Journal of Geotechnical and Geoenvironmental Engineering, 131(3), 359–366. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(359)
  • Emersleben, A., & Meyer, N. (2009). Interaction between hoop stresses and passive earth resistance in single and multiple geocell structures. Proceeding in GeoAfrica: 1st African Regional Conference on Geosynthetics, Geosynthetic Interest Group of South Africa (GIGSA), pp. 1–10.
  • Fakher, A., & Jones, C. J. F. P. (1996). Discussion on bearing capacity of rectangular footings on geogrid reinforced sand, by Yetimoglu, T., Wu, J.T.H., Saglamer, A., 1994. Journal of Geotechnical Engineering, 122(4), 326–327. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(326)
  • Fattah, M. Y., Al-Neami, M. A. M., & Mohammed, S. A. (2018a). Load carrying capacity of ring footing on geocell reinforced sandy soil. Global Journal of Engineering Science and Research Management, 5(10), 32–42.
  • Fattah, M. Y., Hassan, W. H., & Rasheed, S. E. (2018b). Effect of geocell reinforcement above buried pipes on surface settlement. International Review of Civil Engineering (IRECE), 9(2), 86–90. https://doi.org/10.15866/irece.v9i2.13721
  • Fattah, M. Y., Hassan, W. H., & Rasheed, S. E. (2018c). Behavior of flexible buried pipes under geocell reinforced subbase subjected to repeated loading. International Journal of Geotechnical Earthquake Engineering, 9(1), 22–41.
  • Fazeli Dehkordi, P., Ghazavi, M., & Ganjian, N. (2020). Evaluation behavior of circular footings located on sand bed reinforced with geocell. Amir Kabir Journal of Civil Engineering. https://doi.org/10.22060/CEEJ.2020.17159.6479
  • Fazeli Dehkordi, P., Ghazavi, M., Ganjian, N., & Karim, U. (2019a). Parametric study from laboratory tests on twin circular footings on geocell-reinforced sand. Scientia Iranica. https://doi.org/10.24200/sci.2019.51471.2208
  • Fazeli Dehkordi, P., Ghazavi, M., Ganjian, N., & Karim, U. F. A. (2019b). Effect of geocell-reinforced sand base on bearing capacity of twin circular footings. Geosynthetics International, 26(3), 224–236. https://doi.org/10.1680/jgein.19.00047
  • Fazeli Dehkordi, P., & Karim, U. F. A. (2020). Behaviour of circular footings confined by rigid base and geocell reinforcement. Arabian Journal of Geosciences, 13(20), 1-12. https://doi.org/10.1007/s12517-020-06092-1
  • Gedela, R., & Karpurapu, R. (2020). Influence of pocket shape on numerical response of geocell reinforced foundation systems. Geosynthetics International. 1-11. https://doi.org/10.1680/jgein.20.00042.
  • Ghazavi, M., & Fazeli Dehkordi, P. (2021). Interference influence on behavior of shallow footings constructed on soils, past studies to future forecast: A state-of-the-art review. Transportation Geotechnics, 27, 100502. https://doi.org/10.1016/j.trgeo.2020.100502
  • Ghosh, C., & Madhav, M. R. (1994). Reinforced granular fill-soft soil system: Confinement effect. Geotextiles and Geomembranes, 13(11), 727–741. https://doi.org/10.1016/0266-1144(94)90060-4
  • Guo, J., Han, J., Schrock, S. D., & Parsons, R. L. (2015). Field evaluation of vegetation growth in geocell-reinforced unpaved shoulders. Geotextiles and Geomembranes, 43(5), 403–411. https://doi.org/10.1016/j.geotexmem.2015.04.013
  • Han, J., Pokharel, S. K., Parsons, R. L. (2010). Effect of infill material on the performance of geocell-reinforced bases. 9th International Conference on Geosynthetics, pp. 1503–1506.
  • Han, J., Pokharel, S. K., Yang, X., Manandhar, C., Leshchinsky, D., Halahmi, I., & Parsons, R. L. (2011). Performance of geocell-reinforced RAP bases over weak subgrade under full-scale moving wheel loads. Journal of Materials in Civil Engineering, 23(11), 1525–1534. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000286
  • Han, J., Yang, X. M., Leshchinsky, D., & Parsons, R. L. (2008). Behavior of geocell-reinforced sand under a vertical load. Journal of Transportation Research Board 2045, 1, 95–101.
  • Hegde, A. M. (2017). Geocell reinforced foundation beds-past findings, present trends and future prospects: A state-of-the-art review. Construction and Building Materials, 154, 658–674. https://doi.org/10.1016/j.conbuildmat.2017.07.230
  • Hegde, A. M., & Sitharam, T. G. (2013). Experimental and numerical studies on footings supported on geocell reinforced sand and clay beds. International Journal of Geotechnical Engineering, 7(4), 346–354. https://doi.org/10.1179/1938636213Z.00000000043
  • Hegde, A. M., & Sitharam, T. G. (2015a). Effect of infill materials on the performance of geocell reinforced soft clay beds. Geomechanics and Geoengineering, 10(3), 163–173. https://doi.org/10.1080/17486025.2014.921334
  • Hegde, A. M., & Sitharam, T. G. (2015b). Experimental and numerical studies on protection of buried pipelines and underground utilities using geocells. Geotextiles and Geomembranes, 43(5), 372–381. https://doi.org/10.1016/j.geotexmem.2015.04.010
  • Hegde, A. M., & Sitharam, T. G. (2015c). Joint strength and wall deformation characteristics of a single-cell geocell subjected to uniaxial compression. International Journal of Geomechanics, 15(5), 04014080. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000433
  • Hegde, A. M., & Sitharam, T. G. (2015d). 3-Dimensional numerical modelling of geocell reinforced sand beds. Geotextiles and Geomembranes, 43(2), 171–181. https://doi.org/10.1016/j.geotexmem.2014.11.009
  • Hegde, A. M., & Sitharam, T. G. (2015e). Experimental and numerical studies on protection of buried pipelines and underground utilities using geocells. Geotextiles and Geomembranes, 43(5), 372–381. https://doi.org/10.1016/j.geotexmem.2015.04.010
  • Hegde, A. M., & Sitharam, T. G. (2017). Experiment and 3D-numerical studies on soft clay bed reinforced with different types of cellular confinement systems. Transportation Geotechnics, 10, 73–84. https://doi.org/10.1016/j.trgeo.2017.01.001
  • Henkel, D. J., & Gilbert, G. D. (1952). The effect measured of the rubber membrane on the triaxial compression strength of clay samples. Géotechnique, 3(1), 20–29. https://doi.org/10.1680/geot.1952.3.1.20
  • Jenner, C. G., Bush, D. I., & Bassett, R. H. (1988). The use of slip line fields to assess the improvement in bearing capacity of soft ground given by a cellular foundation mattress installed at the base of an embankment. Proceeding in: International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, 209–214.
  • Kargar, M., & Mir Mohammad Hosseini, S. M. (2018). Influence of reinforcement stiffness and strength on load-settlement response of geocell-reinforced sand bases. European Journal of Environmental and Civil Engineering, 22(5), 596–613. https://doi.org/10.1080/19648189.2016.1214181
  • Koerner, R. M. (1994). Designing with Geosynthetics. 3rd ed. Prentice Hall.
  • Lal, D., Sankar, N., & Chandrakaran, S. (2017). Behaviour of square footing on sand reinforced with coir geocell. Arabian Journal of Geosciences, 10(15), 1-8. https://doi.org/10.1007/s12517-017-3131-9
  • Leshchinsky, B., & Ling, H. I. (2013a). Numerical modeling of behavior of railway ballasted structure with geocell confinement. Geotextiles and Geomembranes, 36, 33–43. https://doi.org/10.1016/j.geotexmem.2012.10.006
  • Leshchinsky, B., & Ling, H. I. (2013b). Effects of geocell confinement on strength and deformation behavior of gravel. Journal of Geotechnical and Geoenvironmental Engineering, 139(2), 340–352. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000757
  • Liu, Y., Deng, A., & Jaksa, M. (2020). Three-dimensional discrete-element modeling of geocell-reinforced ballast considering breakage. International Journal of Geomechanics, 20(4), 04020032. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001552
  • Lyamin, A. V., Salgado, R., Sloan, S. W., & Prezzi, M. (2007). Two and three-dimensional bearing capacity of footings in sand. Géotechnique, 57(8), 647–662. https://doi.org/10.1680/geot.2007.57.8.647
  • Madhavi Latha, G. M., Dash, S. K., & Rajagopal, K. (2009c). Numerical simulation of the behavior of geocell reinforced sand in foundations. International Journal of Geomechanics, 9(4), 143–152. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(143)
  • Madhavi Latha, G., Dash, S. K., & Rajagopal, K. (2008). Equivalent continuum simulations of geocell reinforced sand beds supporting strip footings. Geotechnical and Geological Engineering, 26(4), 387–398. https://doi.org/10.1007/s10706-008-9176-5
  • Madhavi Latha, G., & Rajagopal, K. (2007). Parametric finite element analyses of geocell supported embankments. Canadian Geotechnical Journal, 44(8), 917–927. https://doi.org/10.1139/T07-039
  • Madhavi Latha, G., Rajagopal, K., & Krishnaswamy, N. R. (2006). Experimental and theoretical investigations on geocell-supported embankments. International Journal of Geomechanics, 6(1), 30–35. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:1(30)
  • Madhavi Latha, G., & Somwanshi, A. (2009a). Bearing capacity of square footings on geosynthetic reinforced sand. Geotextiles and Geomembranes, 27(4), 281–294. https://doi.org/10.1016/j.geotexmem.2009.02.001
  • Madhavi Latha, G., & Somwanshi, A. (2009b). Effect of reinforcement form on the bearing capacity of square footings on sand. Geotextiles and Geomembranes, 27(6), 409–422. https://doi.org/10.1016/j.geotexmem.2009.03.005
  • Maheshwari, P., & Babu, G. L. S. (2017). Nonlinear deformation analysis of geocell reinforcement in pavements. International Journal of Geomechanics, 17(6), 04016144. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000854
  • Maheshwari, P., & Basudhar, P. K. (2020). Visco-elastic response of combined footings on earth beds with geocell-geomembrane inclusions. Arabian Journal of Geosciences, 13(21), 1-12. https://doi.org/10.1007/s12517-020-06127-7
  • Mandal, J. N., & Gupta, P. (1994). Stability of geocell-reinforced soil. Construction and Building Materials, 8(1), 55–62. https://doi.org/10.1016/0950-0618(94)90009-4
  • Martin, C. (2005). Exact bearing capacity calculations using the method of characteristics. Proceeding in 11th International Conference of IACMAG, Vol. 4, pp. 441–450.
  • Mehdipour, I., Ghazavi, M., & Moayed, R. Z. (2017). Stability analysis of geocell-reinforced slopes using the limit equilibrium horizontal slice method. International Journal of Geomechanics, 17(9), 06017007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000935
  • Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, 1(1), 16–26. https://doi.org/10.1139/t63-003
  • Mhaiskar, S. Y., & Mandal, J. N. (1996). Investigations on soft clay subgrade strengthening using geocells. Construction and Building Materials, 10(4), 281–286. https://doi.org/10.1016/0950-0618(95)00083-6
  • Milligan, G. W. E., Fannin, R. J., & Farrar, D. M. (1986). Model and full-scale tests of granular layers reinforced with a geogrid. Proceeding in 3th International Conference on Geotextiles. Vol. 1, pp. 61–66.
  • Moghaddas Tafreshi, S. N., & Dawson, A. R. (2010a). Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement. Geotextiles and Geomembranes, 28(1), 72–84. https://doi.org/10.1016/j.geotexmem.2009.09.003
  • Moghaddas Tafreshi, S. N., & Dawson, A. R. (2010b). Behaviour of footings on reinforced sand subjected to repeated loading – Comparing use of 3D and planar geotextile. Geotextiles and Geomembranes, 28(5), 434–447. https://doi.org/10.1016/j.geotexmem.2009.12.007
  • Moghaddas Tafreshi, S. N., & Dawson, A. R. (2012). A comparison of static and cyclic loading responses of foundations on geocell reinforced sand. Geotextiles and Geomembranes, 32, 55–68. https://doi.org/10.1016/j.geotexmem.2011.12.003
  • Moghaddas Tafreshi, S. N., Khalaj, O., & Dawson, A. R. (2013). Pilot-scale load tests of a combined multilayered geocell and rubber-reinforced foundation. Geosynthetics International, 20(3), 143–161. https://doi.org/10.1680/gein.13.00008
  • Moghaddas Tafreshi, S. N., Khalaj, O., & Dawson, A. R. (2014). Repeated loading of soil containing granulated rubber and multiple geocell layers. Geotextiles and Geomembranes, 42(1), 25–38. https://doi.org/10.1016/j.geotexmem.2013.12.003
  • Moghaddas Tafreshi, S. N., Shaghaghi, T., Tavakoli Mehrjardi, G. H., Dawson, A. R., & Ghadrdan, M. (2015). A simplified method for predicting the settlement of circular footings on multi-layered geocell-reinforced non-cohesive soils. Geotextiles and Geomembranes, 43(4), 332–344. https://doi.org/10.1016/j.geotexmem.2015.04.006
  • Moghaddas Tafreshi, S. N., Sharifi, P., & Dawson, A. R. (2016). Performance of circular footings on sand by use of multiple-geocell or planar geotextile reinforcing layers. Soils and Foundations, 56(6), 984–997. https://doi.org/10.1016/j.sandf.2016.11.004
  • Moghaddas Tafreshi, S. N., Zarei, S. E., & Soltanpour, Y. (2008). Cyclic loading on foundation to evaluate the coefficient of elastic uniform compression of sand. Proceeding in 14th World Conference on Earthquake Engineering.
  • Muthukumar, S., Sakthivelu, A., Shanmugasundaram, K., Mahendran, N., & Ravichandran, V. (2019). Performance assessment of square footing on Jute geocell‑reinforced sand. International Journal of Geosynthetics and Ground Engineering, 5(3), 1-10. https://doi.org/10.1007/s40891-019-0176-8
  • Oliaei, M., & Kouzegaran, S. (2017). Efficiency of cellular geosynthetics for foundation reinforcement. Geotextiles and Geomembranes, 45(2), 11–22. https://doi.org/10.1016/j.geotexmem.2016.11.001
  • Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2009). Behavior of geocell-reinforced granular bases under static and repeated loads. International Foundation Congress & Equipment Expo, Orlando, Florida, USA, pp. 409–419. https://doi.org/10.1061/41023(337)52
  • Pokharel, S. K., Han, J., Leshchinsky, D., Parsons, R. L., & Halahmi, I. (2010). Investigation of factors influencing behavior of single geocell-reinforced bases under static loading. Geotextiles and Geomembranes, 28(6), 570–578. https://doi.org/10.1016/j.geotexmem.2010.06.002
  • Presto. (2008). Geoweb load support system-Technical overview. Presto Products Appleton, WI.
  • Rajagopal, K., Krishnaswamy, N. R., & Madhavi Latha, G. (1999). Behaviour of sand confined with single and multiple geocells. Geotextiles and Geomembranes, 17(3), 171–184. https://doi.org/10.1016/S0266-1144(98)00034-X
  • Rea, C., & Mitchell, J. K. (1978). Sand reinforcement using paper grid cells. Proceeding of the ASCE Spring Convention and Exhibit, American Society of Civil Engineers. NewYork, Preprint 3130, pp. 24–28.
  • Saride, S., Gowrisetti, S., Sitharam, T. G., & Puppala, A. J. (2009). Numerical simulation of geocell-reinforced sand and clay. Proceedings of the Institution of Civil Engineers - Ground Improvement, 162(4), 185–198. https://doi.org/10.1680/grim.2009.162.4.185
  • Shadmand, A., Ghazavi, M., & Ganjian, N. (2018). Load-settlement characteristics of large-scale square footing on sand reinforce with opening geocell reinforcement. Geotextiles and Geomembranes, 43(3), 319–326.
  • Sheikh, I. R., & Shah, M. Y. (2020). State-of-the-art review on the role of geocells in soil reinforcement. Geotechnical and Geological Engineering. 1-15. https://doi.org/10.1007/s10706-020-01629-3
  • Sherin, K. S., Chandrakaran, S., & Sankar, N. (2017). Effect of geocell geometry and multi-layer system on the performance of geocell reinforced sand under a square footing. International Journal of Geosynthetics and Ground Engineering, 3(3), 1-11. https://doi.org/10.1007/s40891-017-0097-3
  • Shin, E. C., Kang, H. H., & Park, J. J. (2017). Reinforcement efficiency of bearing capacity with geocell shape and filling materials. KSCE Journal of Civil Engineering, 21(5), 1648–1656. https://doi.org/10.1007/s12205-016-1649-0
  • Sireesh, S., Sitharam, T. G., & Dash, S. K. (2009). Bearing capacity of circular footing on geocell-sand mattress overlying clay bed with void. Geotextiles and Geomembranes, 27(2), 89–98. https://doi.org/10.1016/j.geotexmem.2008.09.005
  • Sitharam, T. G., & Hegde, A. M. (2013). Design and construction of geocell foundation to support the embankment on settled red mud. Geotextiles and Geomembranes, 41, 55–63. https://doi.org/10.1016/j.geotexmem.2013.08.005
  • Sitharam, T. G., & Sireesh, S. (2005). Behaviour of embedded footings supported on geocell reinforced foundation beds. Geotechnical Testing Journal, ASTM, 28(5), 452–463.
  • Sitharam, T. G., & Sireesh, S. (2006). Effects of base geogrid on geocell-reinforced foundation beds. Geomechanics and Geoengineering, 1(3), 207–216. https://doi.org/10.1080/17486020600900596
  • Tang, X., & Yang, M. (2013). Investigation of flexural behavior of geocell reinforcement using three-layered beam model testing. Geotechnical and Geological Engineering, 31(2), 753–765. https://doi.org/10.1007/s10706-013-9625-7
  • Tanyu, B. F., Aydilek, A. H., Lau, A. W., Edil, T. B., & Benson, C. H. (2013). Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades. Geosynthetics International, 20(2), 47–61. https://doi.org/10.1680/gein.13.00001
  • Tavakoli Mehrjardi, Gh., Behrad, R., & Moghaddas Tafreshi, S. N. (2019). Scale effect on the behavior of geocell-reinforced soil. Geotextiles and Geomembranes, 47(2), 154–163. https://doi.org/10.1016/j.geotexmem.2018.12.003
  • Tavakoli Mehrjardi, Gh., Moghaddas Tafreshi, S. N., & Dawson, A. R. (2013). Pipe response in a geocell-reinforced trench and compaction considerations. Geosynthetics International, 20(2), 105–118. https://doi.org/10.1680/gein.13.00005
  • Ueno, K., Miura, K., & Maeda, Y. (1998). Prediction of ultimate bearing capacity of surface footings with regard to size effects. Soils and Foundations, 38(3), 165–178. https://doi.org/10.3208/sandf.38.3_165
  • Venkateswarlu, H., & Hegde, A. M. (2019). Effect of infill materials on the vibration isolation efficacy of geocell reinforced soil beds. Canadian Geotechnical Journal, 57(9), 1265–1438.
  • Webster, S. L., & Alford, S. J. (1978). Investigation of construction concepts for pavements across soft ground. Report S-77-1, Soils and Pavements Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
  • Wesseloo, J., Visser, A. T., & Rust, E. (2009). The stress-strain behaviour of multiple cell geocell packs. Geotextiles and Geomembranes, 27(1), 31–38. https://doi.org/10.1016/j.geotexmem.2008.05.009
  • Yang, X., Han, J., Leshchinsky, D., & Parsons, R. (2013). A three-dimensional mechanistic-empirical model for geocell-reinforced unpaved roads. Acta Geotechnica, 8(2), 201–213. https://doi.org/10.1007/s11440-012-0183-6
  • Yang, X., Han, J., Parsons, R. L., & Leshchinsky, D. (2010). Three-dimensional numerical modelling of single geocell-reinforced sand. Frontiers of Structural and Civil Engineering, 4(2), 233–240.
  • Yang, X., Han, J., Pokharel, S. K., Manandhar, C., Parsons, R. L., Leshchinsky, D., & Halahmi, I. (2012). Accelerated pavement testing of unpaved roads with geocell-reinforced sand bases. Geotextiles and Geomembranes, 32, 95–103. https://doi.org/10.1016/j.geotexmem.2011.10.004
  • Yuu, J., Han, J., Rosen, A., Parsons, R., & Leshchinsky, D. (2008). Technical review of geocell-reinforced base courses over weak subgrade. Proceeding in 1th Pan American Geosynthetics Conference, pp. 2–5.
  • Zhang, L., Ou, Q., & Zhao, M. (2018). Double-beam model to analyze the performance of a pavement structure on geocell-reinforced embankment. Journal of Engineering Mechanics, 144(8), 06018002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001453
  • Zhang, L., Zhao, M., Shi, C., & Zhao, H. (2010). Bearing capacity of geocell reinforcement in embankment engineering. Geotextiles and Geomembranes, 28(5), 475–482. https://doi.org/10.1016/j.geotexmem.2009.12.011
  • Zhang, L., Zhao, M., Shi, C., & Zhao, H. (2012). Nonlinear analysis of a geocell mattress on an elastic–plastic foundation. Computers and Geotechnics, 42, 204–211. https://doi.org/10.1016/j.compgeo.2012.01.008
  • Zhang, L., Zhao, M., Zou, X., & Zhao, H. (2009). Deformation analysis of geocell reinforcement using Winkler model. Computers and Geotechnics, 36(6), 977–983. https://doi.org/10.1016/j.compgeo.2009.03.005
  • Zhou, H., & Wen, X. (2008). Model studies on geogrid or geocell reinforced sand cushion on soft soil. Geotextiles and Geomembranes, 26(3), 231–238. https://doi.org/10.1016/j.geotexmem.2007.10.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.