182
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Probabilistic analysis of the crack spacing in reinforced concrete members under tensile loads – numerical investigation of size effects

, , , &
Pages 5545-5568 | Received 29 Oct 2020, Accepted 22 Mar 2021, Published online: 19 Apr 2021

References

  • Alam, S. Y., Lenormand, T., Loukili, A., & Regoin, J. P. (2010). Measuring crack width and spacing in reinforced concrete members [Paper presentation]. In 7th International Conference on FraMCoS, Jeju, South Korea.
  • Balazs, G. L. (1993). Cracking analysis based on slip and bond stresses. ACI Materials Journals, 90(4), 340.
  • Baroth, J., Schoefs, F., & Breysse, D. (2011). Construction reliability: Safety, variability and sustainability. Edition Lavoisier. 21–37.
  • Bažant, Z. P., & Le, J.-L. (2017). Probabilistic mechanics of quasibrittle structures. strength, lifetime, and size effect. Cambridge University Press. https://doi.org/10.1017/9781316585146
  • Bažant, Z. P., & Planas, J. (2000). Fracture and size effect in concrete and other quasi brittle materials. Routledge.
  • Bažant, Z. P., & Yu, Q. (2009). Universal size effect law and effect of crack depth on quasi-brittle structure strength. Journal of Engineering Mechanics, 135(2), 78–84. https://doi.org/10.1061/(ASCE)0733-9399(2009)135:2(78)
  • Bažant, Z. P. (1999). Size effect on structural strength: a review. Archive of Applied Mechanics, 69, 703. https://doi.org/10.1007/s004190050252
  • Bažant, Z. P. (1997). Scaling of quasibrittle fracture: Asymptotic analysis. International Journal of Fracture, 83, 19. https://doi.org/10.1023/A:1007387823522
  • Bažant, Z. P., & Chen, E. P. (1997). Scaling of structural failure. Applied Mechanics Reviewed, 50(10), 593.
  • Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Matériaux et Construction, 16, 155. https://doi.org/10.1007/BF02486267
  • Beeby, A. W. (2004). The influence of the parameter φ/ρeff on crack widths. Structural Concrete, 5(2), 71–83. https://doi.org/10.1680/stco.2004.5.2.71
  • Beeby, A. W., & Scott, R. H. (2004). Insights into the cracking and tension stiffening behaviour of reinforced concrete tension members revealed by computer modelling. Magazine of Concrete Research, 56(3), 179–190. https://doi.org/10.1680/macr.2004.56.3.179
  • Bouhjiti, D. E.-M., Blasone, M., Baroth, J., Dufour, F., Masson, B., & Michel-Ponnelle, S. (2018). Statistical modelling of cracking in large concrete structures under thermo-hydro-mechanical loads: Application to nuclear containment buildings. Part 2: Sensitivity analysis. Nuclear Engineering and Design, 334, 1–23. https://doi.org/10.1016/j.nucengdes.2018.04.013
  • Broms, B. B. (1965). Technique for investigation of internal cracks in reinforced concrete members. ACI, 62, 35.
  • CEOS Project. (2015). Control of cracking in reinforced concrete structures: Research project CEOS.fr. Wiley-ISTE.
  • Cuypers, H., & Wastiels, J. (2006). Stochastic matrix-cracking model for textile reinforced cementitious composites under tensile loading. Materials and Structures, 39(8), 777–786. https://doi.org/10.1617/s11527-005-9053-0
  • de Larrard, T., Colliat, J.-B., Benboudjema, F., Torrenti, J.-M., & Nahas, G. (2010). Effect of the Young modulus variability on the mechanical behavior of a nuclear containment vessel. Nuclear Engineering and Design, 240, 4051. https://doi.org/10.1016/j.nucengdes.2010.09.031
  • Der Kiureghian, A., & Ke, J. B. (1988). The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics, 3(2), 83–91. https://doi.org/10.1016/0266-8920(88)90019-7
  • Duan, K., Hu, X. Z., & Wittmann, F. H. (2006). Scaling of quasi-brittle fracture: Boundary and size effect. Mechanics of Materials, 38, 128. https://doi.org/10.1016/j.mechmat.2005.05.016
  • Farra, B., & Jacoud, J.-P. (1993). Rapport des essais de tirants sous déformation imposée de courte durée. Projet: Influence du béton et de l’armature sur la fissuration des structures en béton. Publication N°140. IBAP. Ecole Polytechnique Fédérale de Lausanne.
  • fib Bulletin 52 (2010). Structural concrete - textbook on behavior, design and performance (Vol. 2, p. 305). fib.
  • Ghannoum, M., Baroth, J., Rospars, C., & Millard, A. (2017). Prediction of the size effect in concrete structures using an analytical approach to the weakest link and localization method (WL2). Materials and Structures, 50, 1–13. https://doi.org/10.1617/s11527-017-1049-z
  • Giry, C., Dufour, F., & Mazars, J. (2011). Stress-based nonlocal damage model. Solids and Structures, 48, 25–26. https://doi.org/10.1016/j.ijsolstr.2011.08.012
  • Gi-Yeol, L., & Woo, K. (2016). Cracking and tension stiffening behavior of high-strength concrete tension members subjected to axial load. Advances in Structural Engineering, 12, 127. https://doi.org/10.1260/136943309788251614
  • Hild, F. (1992). De la rupture des matériaux à comportement fragile. Thèse, Univ. Pierre et Marie Curie – Paris VI.
  • Hoover, C. G., Bažant, Z. P., Vorel, J., Wendner, R., & Hubler, M. H. (2013). Comprehensive concrete fracture tests: Description and results. Engineering Fracture Mechanics, 114, 92. https://doi.org/10.1016/j.engfracmech.2013.08.007
  • Jiaji, W., Tao, M.-X., & Nie, X. (2017). Fracture energy-based model for average crack spacing of reinforced concrete considering size effect and concrete strength variation. Construction and Building Materials, 148, 398–410. https://doi.org/10.1016/j.conbuildmat.2017.05.082
  • Kaar, P. H., & Eivind, H. (1965). High strength bars as concrete reinforcement part 7 control of cracking. Portland Cement Association. Research Development Laboratories.
  • Kaar, P. H., & Mattock, A. H. (1963). High strength bars as concrete reinforcement part 4 control of cracking. Portland Cement Association. Research Development Laboratories.
  • Kaklauskas, G., Ramanauskas, R., & Ng, P. L. (2019). Predicting crack spacing of reinforced concrete tension members using strain compliance approach with debonding. Journal of Civil Engineering and Management, 25(5), 422–430. https://doi.org/10.3846/jcem.2019.9871
  • Karhunen, K. (1947). Über lineare methoden in der wahrscheinlichkeitsrechnung. Annales Academiae Scientiarum Fennicae, 37, 1–79.
  • Lapi, M., Orlando, M., & Spinelli, P. (2018). A review of literature and code formulations for cracking in R/C members. Structural Concrete, 19(5), 1481–1503. https://doi.org/10.1002/suco.201700248
  • Li, C.-C., & Der Kiureghian, A. (1993). Optimal discretization of random fields. Journal of Engineering Mechanics, 119(6), 1136–1154. [Database] https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
  • Liu, P.-L., & Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics, 1(2), 105–112. https://doi.org/10.1016/0266-8920(86)90033-0
  • Loève, M. (1960). Probability theory (2nd ed.). Van Nostrand.
  • Mazars, J. (1998). Application de la mécanique d’endommagement au comportement non linéaire et à la rupture du béton de structure. Thèse, Univ. Pierre et Marie Curie Paris VI.
  • Mazars, J., Hamon, F., & Grange, S. (2015). A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings. Materials and Structures, 48(11), 3779–3793. https://doi.org/10.1617/s11527-014-0439-8
  • Model Code. fib Model Code for concrete structures.1990 & 2010.
  • Muller, W. G., & Zimmerman, D. L. (1999). Optimal designs for variogram estimation. Environmetrics, 10(1), 23–37. https://doi.org/10.1002/(SICI)1099-095X(199901/02)10:1 < 23::AID-ENV333 > 3.0.CO;2-P
  • Nataf, A. (1962). Détermination des distributions dont les marges sont données. Comptes-Rendus Hebdomadaires Des Séances de L’académie Des Sciences, 255, 42–43.
  • NF EN (1992). 1-1 Eurocode 2 - Design of concrete structures - Part 1-1: General rules and rules for buildings.
  • Oh, B. H., & Kang, Y. J. (1987). New formulas for maximum crack width and crack spacing in reinforced concrete flexural members. ACI Structural, 84(2), 103.
  • Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M., & Geers, M. G. D. (1998). Gradient‐enhanced damage modelling of concrete fracture. Mechanics of Cohesive-Frictional Materials, 3(4), 323–342. https://doi.org/10.1002/(SICI)1099-1484(1998100)3:4 < 323::AID-CFM51 > 3.0.CO;2-Z
  • Rossi, P., Wu, X., Maou, F., & Belloc, A. (1994). Scale effect on concrete in tension. Materials and Structures, 27, 437–444. https://doi.org/10.1007/BF02473447
  • Saidi, M., & Gabor, A. (2020). Iterative analytical modelling of the global behaviour of textile-reinforced cementitious matrix composites subjected to tensile loading. Construction and Building Materials, 263, 120130. https://doi.org/10.1016/j.conbuildmat.2020.120130
  • Sellier, A., & Millard, A. (2014). Weakest link and localisation WL2: A method to conciliate probabilistic and energetic scale effects in numerical models. European Journal of Environmental and Civil Engineering, 18, 1–15. https://doi.org/10.1080/19648189.2014.906368
  • Vanmarcke, E. (1983). Random field: analysis and synthesis. The MIT Press.
  • Vořechovský, M. (2008). Simulation of simply cross correlated random fields by series expansion methods. Structural Safety, 30(4), 337–363. https://doi.org/10.1016/j.strusafe.2007.05.002
  • Watstein, D., & Parsons, D. E. (1943). Width and spacing of tensile cracks in axially reinforced concrete cylinders. Journal of Research of the National Bureau of Standards, 31(1), 1. https://doi.org/10.6028/jres.031.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.