171
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A simplified prediction method for additional stress on underlying layer of rigid pile-net composite foundation

, , &
Pages 5696-5715 | Received 27 Oct 2019, Accepted 08 Apr 2021, Published online: 11 May 2021

References

  • Anyaegbunam, A. (2014). Complete stresses and displacements in a cross anisotropic half-space caused by a surface vertical point load. International Journal of Geomechanics, 14 (2), 171–181. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000260
  • Ariyarathne, P., & Liyanapathirana, D. S. (2015). Review of existing design methods for geosynthetic-reinforced pile-supported embankments. Soils and Foundations, 55(1), 17–34. https://doi.org/10.1016/j.sandf.2014.12.002
  • Ariyarathne, P., Liyanapathirana, D. S., & Leo, C. J. (2013). Comparison of different two-dimensional idealizations for a geosynthetic-reinforced pile-supported embankment. International Journal of Geomechanics, 13(6), 754–768. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000266
  • Alani, W., Wanatowski, D., & Chan, S. H. (2014). Numerical analysis of piled embankments on soft soils. Geotechnical Special Publication, 238, 30–39.
  • Abusharar, S. W., Zheng, J. J., Chen, B. G., & Yin, J. H. (2009). A simplified method for analysis of a piled embankment reinforced with geosynthetics. Geotextiles and Geomembranes, 27(1), 39–52. https://doi.org/10.1016/j.geotexmem.2008.05.002
  • Briançon, L., & Simon, B. (2012). Performance of pile-supported embankment over soft soil: full-scale experiment. Journal of Geotechnical and Geoenvironmental Engineering, 138(4), 551–561. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000561
  • Bourgeois, E., Buhan, P. D., & Hassen, G. (2012). Settlement analysis of piled-raft foundations by means of a multiphase model accounting for soil-pile interactions. Computers and Geotechnics, 46(1), 26–38. https://doi.org/10.1016/j.compgeo.2012.05.015
  • Bajad, S. P., & Sahu, R. B. (2008). An Experimental study on the behaviour of vertically loaded piled raft on soft clay [Paper presentation]. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (pp. 84–91). Goa, IACMAG.
  • Chen, R. P., Chen, Y. M., Han, J., & Xu, Z. Z. (2008). A theoretical solution for pile-supported embankments on soft soil under one dimensional compression. Canadian Geotechnical Journal, 45(5), 611–623. https://doi.org/10.1139/T08-003
  • Eekelen, S. J. M. V., Bezuijen, A., & Tol, A. F. V. (2011). Analysis and modification of the British standard BS8006 for the design of piled embankments. Geotextiles and Geomembranes, 29(3), 345–359. https://doi.org/10.1016/j.geotexmem.2011.02.001
  • Geddes, J. D. (1966). Stresses in foundation soils due to vertical subsurface loading. Géotechnique, 16 (3), 231–255. https://doi.org/10.1680/geot.1966.16.3.231
  • Goh, A. T. C., Zhang, F., Zhang, W. G., Zhang, Y. M., & Liu, H. L. (2017). A simple estimation model for 3D braced excavation wall deflection. Computers and Geotechnics, 83, 106–113. https://doi.org/10.1016/j.compgeo.2016.10.022
  • Huang, J., & Han, J. (2009). 3D coupled mechanical and hydraulic modeling of a geosynthetic-reinforced deep mixed column-supported embankment. Geotextiles and Geomembranes, 27(4), 272–280. https://doi.org/10.1016/j.geotexmem.2009.01.001
  • Houda, M., Jenck, O., & Emeriault, F. (2019). Soft soil improvement by rigid inclusions under vertical cyclic loading: numerical back analysis. European Journal of Environmental and Civil Engineering, https://doi.org/10.1080/19648189.2018.1531268
  • Halvordson, K. A., Plaut, R. H., & Filz, G. M. (2010). Analysis of geosynthetic reinforcement in pile-supported embankments. Part II: 3D cable-net model. Geosynthetics International, 17(2), 68–76. https://doi.org/10.1680/gein.2010.17.2.68
  • Hasan, M., & Samadhiya, N. K. (2017). Performance of geosynthetic-reinforced granular piles in soft clays: model tests and numerical analysis. Computers and Geotechnics, 87, 178–187. https://doi.org/10.1016/j.compgeo.2017.02.016
  • Jardine, R. J., Lehane, B. M., Smith, P. R., & Gildea, P. A. (1995). Vertical loading experiments on rigid pad foundations at Bothkennar. Géotechnique, 45(4), 573–597. https://doi.org/10.1680/geot.1995.45.4.573
  • Knappett, J. A., & Craig, R. F. (2012). Craig’s soil mechanics (8th ed). Oxon, NY: Spon Press.
  • Lang, R., Yan, S., Sun, L., Ji, Y., & Chen, J. (2018). Analysis of stress diffusion angle method for PTC pile composite foundation. European Journal of Environmental and Civil Engineering, 22(sup1), s434–s448. https://doi.org/10.1080/19648189.2017.1369462
  • Lv, Y., Liu, H. L., Ng, C. W. W., Gunawan, A., & Ding, X. M. (2014). A modified analytical solution of soil stress distribution for XCC pile foundations. Acta Geotechnica, 9(3), 529–546. https://doi.org/10.1007/s11440-013-0280-1
  • Lu, W. H., & Miao, L. C. (2015). A simplified 2-D evaluation method of the arching effect for geosynthetic-reinforced and pile-supported embankments. Computers and Geotechnics, 65, 97–103. https://doi.org/10.1016/j.compgeo.2014.11.014
  • Lang, R. Q., & Yang, A. W. (2019). A quasi-equal strain solution for the consolidation of a rigid pile composite foundation under embankment loading condition. Computers and Geotechnics, 117, 103232.
  • Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) (2014). JGJ106-2014 technical code for testing of building foundation piles. China Architecture & Building Press.
  • Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) (2012). GB T50783-2012 technical code for composite foundation. China Architecture & Building Press.
  • Nguyen, D. D. C., Jo, S., & Kim, D. (2013). Design method of piled-raft foundations under vertical load considering interaction effects. Computers and Geotechnics, 47, 16–27. https://doi.org/10.1016/j.compgeo.2012.06.007
  • Prakoso, W. A., & Kulhawy, F. H. (2001). Contribution to piled raft foundation design. Journal of Geotechnical and Geoenvironmental Engineering, 127(1), 17–24. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:1(17)
  • Rowe, R. K., & Liu, K. W. (2015). Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile-supported embankment. Canadian Geotechnical Journal, 52(12), 2041–2054. https://doi.org/10.1139/cgj-2014-0506
  • Rao, B. G., & Ranjan, G. (1985). Settlement analysis of skirted granular piles. Journal of Geotechnical Engineering, 111(11), 1264–1283. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:11(1264)
  • Randolph, M. F., & Wroth, C. P. (1981). Application of the failure state in undrained simple shear to the shaft capacity of driven piles. Géotechnique, 31(1), 143–157. https://doi.org/10.1680/geot.1981.31.1.143
  • Sanctis, L. D., & Mandolini, A. (2006). Bearing capacity of piled rafts on soft clay soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(12), 1600–1610. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1600)
  • Shi, J. W., Ng, C. W. W., & Chen, Y. (2017). A simplified method to estimate three-dimensional tunnel responses to basement excavation. Tunnelling and Underground Space Technology, 62, 53–63. https://doi.org/10.1016/j.tust.2016.11.007
  • Whitaker, T. (1957). Experiments with model piles in groups. Géotechnique, 7(4), 147–167. https://doi.org/10.1680/geot.1957.7.4.147
  • Wu, S. H., Ching, J., & Ou, C. Y. (2013). Predicting wall displacements for excavations with cross walls in soft clay. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 914–927. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000826
  • Wang, Z. F., Shen, J. S., & Cheng, W. C. (2018). Simple method to predict ground displacements caused by installing horizontal jet grouting columns. Mathematics Problems in Engineering, 1897394, 1–11.
  • Wang, C. D., & Tzeng, C. S. (2009). Displacements and stresses due to nonuniform circular loadings in an inhomogeneous cross-anisotropic material. Mechanics Research Communications, 36(8), 921–932. https://doi.org/10.1016/j.mechrescom.2009.08.001
  • Xiong, H., Nicot, F., & Yin, Z. (2019). From micro scale to boundary value problem: using a micromechanically based model. Acta Geotechnica, 14(5), 1307–1323. https://doi.org/10.1007/s11440-018-0717-7
  • Xiong, H., Yin, Z. Y., & Nicot, F. (2019). A multiscale work-analysis approach for geotechnical structures. International Journal for Numerical and Analytical Methods in Geomechanics, 43(6), 1230–1250. https://doi.org/10.1002/nag.2893
  • Yang, G. H., Fan, Z., Jiang, Y., & Zhang, Y. Z. (2015). A simplified method for calculating settlement of rigid pile composite foundation. Rock and Soil Mechanics, 36(S1), 76–84. in Chinese))
  • Yang, T., Ruan, Y., Li, J., & Li, C. (2019). Consolidation analysis of an impervious multi-pile composite ground under rigid foundation. European Journal of Environmental and Civil Engineering, 1–15. https://doi.org/10.1080/19648189.2019.1574608
  • Zhang, L. (1999). Settlement patterns of soft soil foundations under embankments. Canadian Geotechnical Journal, 36(4), 774–781. https://doi.org/10.1139/t99-031
  • Zhang, J., Cui, X., Huang, D., Jin, Q., Lou, J., & Tang, W. (2016). Numerical simulation of consolidation settlement of pervious concrete pile composite foundation under road embankment. International Journal of Geomechanics, 16(1), B4015006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000542
  • Zhang, W. G., Goh, A. T. C., & Xuan, F. (2015). A simple prediction model for wall deflection caused by braced excavation in clays. Computers and Geotechnics, 63, 67–72. https://doi.org/10.1016/j.compgeo.2014.09.001
  • Zhang, W. G., Goh, A. T. C., & Zhang, Y. M. (2015). Updating soil parameters using spreadsheet method for predicting wall deflections in braced excavations. Geotechnical and Geological Engineering, 33(6), 1489–1498. https://doi.org/10.1007/s10706-015-9914-4
  • Zheng, J. J., Liu, Y., Pan, Y., & Hu, J. (2018). Statistical evaluation of the load-settlement response of a multicolumn composite foundation. International Journal of Geomechanics, 18(4), 04018015–04018018. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001124
  • Zhuang, Y., & Wang, K. Y. (2017). Numerical simulation of high-speed railway foundation improved by PVD-DCM method and compared with field measurements. European Journal of Environmental and Civil Engineering, 21(11), 1363–1383. https://doi.org/10.1080/19648189.2016.1170728
  • Zheng, G., Yang, X. Y., Zhou, H. Z., Du, Y. M., Sun, J. Y., & Yu, X. X. (2018). A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations. Computers and Geotechnics, 95, 119–128. https://doi.org/10.1016/j.compgeo.2017.10.006
  • Zhao, M. H., Zhang, L., & Yang, M. H. (2006). Settlement calculation for long-short composite piled raft foundation. Journal of Central South University of Technology, 13(6), 749–754. https://doi.org/10.1007/s11771-006-0026-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.