216
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Neural network-based optimization of fibres for seismic retrofitting applications of UHPFRC

, &
Pages 6305-6333 | Received 25 Feb 2021, Accepted 31 May 2021, Published online: 21 Jun 2021

References

  • Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271–295. https://doi.org/10.1007/s40069-016-0157-4
  • Abdulkareem, O. M., Ben Fraj, A., Bouasker, M., & Khelidj, A. (2018). Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC. Construction and Building Materials, 169, 567–577. https://doi.org/10.1016/j.conbuildmat.2018.02.214
  • Abellán, J., Fernández, J., Torres, N., & Núñez, A. (2020a). Development of cost-efficient UHPC with local materials in Colombia. In Proceedings of Hipermat 2020 - 5th International Symposium on UHPC and Nanotechnology Construction Materials (pp. 97–98). Kassel University Press.
  • Abellán, J., Fernández, J., Torres, N., & Núñez, A. (2020b). Statistical optimization of ultra-high-performance glass concrete. ACI Materials Journal, 117, 243–254. https://doi.org/10.14359/51720292
  • Abellán, J., Núñez, A., & Arango, S. (2020). Pedestrian bridge of UNAL in Manizales: A new UPHFRC application in the Colombian building market. In: Proceedings of Hipermat 2020 - 5th International Symposium on UHPC Nanotechnology Construction (pp. 43–44). Kassel University Press.
  • Abellan, J., Torres, N., Núñez, A., & Fernández, J. (2018). Ultra high preformance fiber reinforced concrete: State of the art, applications and possibilities into the Latin American market. In: XXXVIII Jornadas Sudamericanas de Ingenieria Estructural, Lima, Perú.
  • Abellan, J., Torres, N., Núñez, A., & Fernández, J. (2018). Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, In: IV Congr. Int. Ing. Civ., Havana, Cuba.
  • Abellán-García, J. (2020a). Comparison of artificial intelligence and multivariate regression in modeling the flexural behavior of UHPFRC. Dyna, 87, 239–248. https://doi.org/10.15446/dyna.v87n214.86172.
  • Abellán-García, J. (2020b). Dosage optimization and seismic retrofitting applications of Ultra-HighPerformance Fiber Reinforced Concrete (UHPFRC). PhD Thesis. Universidad Politécnica de Madrid.
  • Abellán-García, J. (2020c). Four-layer perceptron approach for strength prediction of UHPC. Construction and Building Materials, 256, 119465. https://doi.org/10.1016/j.conbuildmat.2020.119465
  • Abellán-García, J. (2021). K-fold validation neural network approach for predicting the one-day compressive strength of UHPC. Advances in Civil Engineering Materials, 10(1), 20200055. https://doi.org/10.1520/ACEM20200055
  • Abellán-García, J., Fernández-Gómez, J. A., Torres-Castellanos, N., & Núñez-López, A. M. (2020). Machine learning prediction of flexural behavior of UHPFRC. In P. Serna, A. Llano-Torre, J. R. Martí-Vargas, & J. Navarro-Gregori (Eds.), Fibre Reinforced Concrete: Improvements and Innovations. BEFIB 2020, RILEM Bookseries (pp. 570–583). Springer Nature Switzerland AG https://doi.org/10.1007/978-3-030-58482-5_52 .
  • Abellán-García, J., Fernández-Gómez, J., & Torres-Castellanos, N. (2020). Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks. European Journal of Environmental and Civil Engineering, 1–25. https://doi.org/10.1080/19648189.2020.1762749
  • Abellán-García, J., Fernández-Gómez, J., Torres-Castellanos, N., & Núñez-López, A. (2021). Tensile behavior of normal strength steel fiber green UHPFRC. ACI Materials Journal, 118, 127–138. https://doi.org/10.14359/51725992
  • Abellán-García, J., & Guzmán-Guzmán, J. S. (2021). Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications. Construction and Building Materials, 285, 122869. https://doi.org/10.1016/j.conbuildmat.2021.122869
  • Abellán-García, J., Guzmán-Guzmán, J. S., Sánchez-Díaz, J. A., & Rojas-Grillo, J. (2021). Experimental validation of artificial intelligence model for the energy absorption capacity of UHPFRC. Dyna, 88, 150–159. https://doi.org/10.15446/dyna.v88n217.
  • Abellán-García, J., Nuñez-Lopez, A., & Arango-Campo, S. (2020). Pedestrian bridge over Las Vegas Avenue in Medellín. First Latin American infrastructure in UHPFRC. In P. Serna, A. Llano-Torre, J. R. Martí-Vargas, & J. Navarro-Gregori (Eds.), Fiber Reinforced Concrete: Omprovements and Innovations, BEFIB 2020, RILEM Bookseries (pp. 864–872). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-58482-5_76.
  • Abellán-García, J., Núñez-López, A., Torres-Castellanos, N., & Fernández-Gómez, J. (2019). Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass. Dyna, 86, 84–92. https://doi.org/10.15446/dyna.v86n211.79596
  • Abellán-García, J., Núñez-López, A., Torres-Castellanos, N., & Fernández-Gómez, J. (2020). Factorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder. Dyna, 87, 42–51. https://doi.org/10.15446/dyna.v87n213.82655.
  • Abellan-Garcia, J., Santofimo-Vargas, M. A., & Torres-Castellanos, N. (2020). Analysis of metakaolin as partial substitution of ordinary Portland cement in Reactive Powder Concrete. Advances in Civil Engineering Matrials, 9, 368–386. https://doi.org/10.1520/ACEM20190224
  • Abellán-García, J., Torres-Castellanos, N., Fernández-Gómez, J. A., & Núñez-López, A. M. (2021). Ultra-high-performance concrete with local high unburned carbon fly ash. Dyna, 88, 38–47. https://doi.org/10.15446/dyna.v88n216.89234.
  • ACI Committe 239R, (2018). ACI – 239 Committee in Ultra-High Performance Concrete, ACI, Toronto.
  • Acker, P., & Behloul, M. (2004). Ductal technology: A large spectrum of properties, a wide range of applications. In: M. Fröhlich & S. Piotrowski (Eds.), Proc. Int. Symp. Ultra High Perform. Concr. (pp. 11–24). Kassel University.
  • Adeli, H. (2001). Neural networks in civil engineering: 1989 − 2000. Computer-Aided Civil and Infrastructure Engineering, 16(2), 126–142. https://doi.org/10.1111/0885-9507.00219
  • Aderaw, M., Muse, S., & Abiero, Z. C. (2018). Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Construction and Building Materials, 190, 517–525. https://doi.org/10.1016/j.conbuildmat.2018.09.097
  • AlHallaq, A. F., Tayeh, B. A., & Shihada, S. (2017). Investigation of the bond strength between existing concrete substrate and UHPC as a repair material. International Journal of Engineering and Advanced Technology, 6, 210–217.
  • Asociación Colombiana de Ingeniería Sísmica (2010). Reglamento Colombiano de construcciónsismo resistente. NSR-10. Asociación Colombiana de Ingeniería.
  • Atkinson, A., & Riani, M. (2000). Robust diagnostic regression analysis. Springer US.
  • Bracci, J. M., Reinhorn, A. M., & Mander, J. B. (1955). Seismic resistance of reinforced concrete frame structures designed for gravity loads: Performance of structural system. ACI Structural Journal, 92(5), 597–609.
  • Byars, E. A., Waldron, P., Dejke, V., & Demis, S. (2001). Durability of FRP in concrete current specifications and a new approach. FRP Compos.
  • Centro de Estudios e Investigaciones Sobre Riesgo. (2005). Escenarios de riesgo y pérdidas por terremoto para Bogotá. University of Los Andes.
  • Chandwani, V., Agrawal, V., & Nagar, R. (2014). Applications of artificial neural networks in modeling compressive strength of concrete: A state of the art review. Advances in Artificial Neural Systems, 2014, 1–2956. https://doi.org/10.1155/2014/629137
  • Chandwani, V., Agrawal, V., & Nagar, R. (2015). Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Systems with Applications, 42(2), 885–893. https://doi.org/10.1016/j.eswa.2014.08.048
  • Chao, S. (2016). Seismic behavior of ultra-high-performance fiber-reinforced concrete moment frame members [Paper presentation]. International Interactive Symposium on UHPC (pp. 1–10). TOCIEJ-13-147
  • Chollet, F., & Allaire, J. J. (2018). Deep learning with R. Manning Publications Co.
  • Dagenais, M. A., Massicotte, B., & Boucher-Proulx, G. (2018). Seismic retrofitting of rectangular bridge piers with deficient lap splices using ultrahigh-performance fiber-reinforced concrete. Journal of Bridge Engineering, 23, 1–13. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001173
  • De Domenico, D., Impollonia, N., & Ricciardi, G. (2019). Seismic retrofitting of confined masonry-RC buildings: The case study of the university hall of residence in Messina, Italy. Ingeniería Sísmica, 36, 54–85.
  • De Larrard, F. (1999). Concrete mixture proportioning: A scientific approach. (1st ed.). CRC Press. https://doi.org/10.1201/9781482272055
  • De Larrard, F., & Sedran, T. (2002). Mixture-proportioning of high-performance concrete. Cement and Concrete Research, 32(11), 1699–1704. https://doi.org/10.1016/S0008-8846(02)00861-X
  • Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219. https://doi.org/10.1080/00224065.1980.11980968
  • Dogan, E., & Krstulovic-Opara, N. (2003). Seismic retrofit with continuous slurry-infiltrated mat concrete jackets. ACI Structural Journal, 100, 713-722.
  • Estebon, M. D. (1997). Perceptrons: An associative learning network. Virginia Tech.
  • Everitt, B., & Hothorn, T. (2015). MVA: An introduction to applied multivariate analysis with R. Springer.
  • Funk, J. E. J. E., & Dinger, D. R. (1994). Predictive process control of crowded particulate suspensions: Applied to ceramic manufacturing. Springer Science. https://doi.org/10.1007/978-1-4615-3118-0
  • Garcia, L. E. (2014). Desarrollo de la normativa sismo resistente colombiana en los 30 años desde su primera expedición. Revista de Ingeniería, 41, 71–77.
  • Ghafari, E. (2012). Optimization of UHPC by adding nanomaterials. In Proceedings of Hipermat 2012, 3rd Int. Symp. UHPC Nanotechnol. Constr. Mater., Kassel Uni, Kassel, Alemania (pp. 71–78).
  • Ghafari, E., Bandarabadi, M., Costa, H., & Júlio, E. (2015). Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model. Journal of Materials in Civil Engineering, 27(11), 04015017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001270
  • Ghafari, E., Costa, H., & Júlio, E. (2015). Statistical mixture design approach for eco-efficient UHPC. Cement and Concrete Composites, 55, 17–25. https://doi.org/10.1016/j.cemconcomp.2014.07.016
  • Ghafari, E., Costa, H., Júlio, E., Portugal, A., & Durães, L. (2012). Enhanced durability of ultra high performance concrete by incorporating supplementary cementitious materials. In Second Int. Conf. Microstruct. Durab. Cem. Compos (pp. 11–13).
  • Ghafari, E., Costa, H., Nuno, E., & Santos, B. (2014). RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers. Construction and Building Materials, 66, 375–383. https://doi.org/10.1016/j.conbuildmat.2014.05.064
  • Ghafari, E., Costa, H., Nuno, E., Santos, B., Costa, H., & Júlio, E. (2015). Critical review on eco-efficient ultra high performance concrete enhanced with nano- materials. Construction and Building Materials, 101, 201–208. https://doi.org/10.1016/j.conbuildmat.2015.10.066
  • Gupta, S. (2013). Using artificial neural network to predict the compressive strength of concrete containing nano-silica. Civil Engineering and Architecture, 1(3), 96–102. https://doi.org/10.13189/cea.2013.010306
  • Haber, Z. B., Munoz, J. F., & Graybeal, B. A. (2017). Field testing of an ultra-high performance concrete overlay. Technical Report. U.S. Department of Transportation. Federal Highway Administration.
  • Härdle, W. K., & Simar, L. (2012). Applied multivariate statistical analysis. Springer-Verlag GmbH.
  • Hudson Beale, M. (2012). Neural network toolbox user’s guide. MathWorks J.
  • Kalny, M., Kvasnicka, V., & Komanec, J. (2016). First practical applications of UHPC in the Czech Republic. In E. Fehling, B. Middendorf, & J. Thiemicke (Eds.), Proc. Hipermat 2016 - 4th Int. Symp. UHPC Nanotechnol. Constr. Mater. (pp. 147–148). Kassel.
  • Khan, M. I., Al-Osta, M. A., Ahmad, S., & Rahman, M. K. (2018). Seismic behavior of beam-column joints strengthened with ultra-high performance fiber reinforced concrete. Composite Structures, 200, 103–119. https://doi.org/10.1016/j.compstruct.2018.05.080
  • Khashman, A., & Akpinar, P. (2017). ScienceDirect non-destructive prediction of concrete compressive strength using neural networks prediction of concrete compressive strength using neural networks. Procedia Computer Science, 108, 2358–2362. https://doi.org/10.1016/j.procs.2017.05.039
  • Kim, D.-J., Naaman, A. E., & El-Tawil, S. (2009). High performance fiber reinforced cement composites with innovative slip hardending twisted steel fibers. International Journal of Concrete Structures and Materials, 3(2), 119–126. https://doi.org/10.4334/IJCSM.2009.3.2.119
  • Kim, D. J., Park, S. H., Ryu, G. S., & Koh, K. T. (2011). Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Construction and Building Materials, 25(11), 4144–4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051
  • Kou, S. C., & Xing, F. (2012). The effect of recycled glass powder and reject fly ash on the mechanical properties of fibre-reinforced ultrahigh performance concrete, hindawi publ. Advances in Materials Science and Engineering, 2012, 1–8. https://doi.org/10.1155/2012/263243
  • Kwon, S., Nishiwaki, T., Kikuta, T., & Mihashi, H. (2014). Development of ultra-high-performance hybrid fiber-reinforced cement-based composites. ACI Materials Journal, 111, 309–318. https://doi.org/10.14359/51686890
  • Larrard, F. (1994). Optimization of ultra-high performance concrete by the use of a packing model. Cement and Concrete Research, 24, 997–1009.
  • Lavorato, D., Bergami, A. V., Nuti, C., Briseghella, B., Xue, J., Tarantino, A. M., Marano, G. C., & Santini, S. (2017). Ultra-high-performance fibre-reinforced concrete jacket for the repair and the seismic retrofitting of Italian and Chinese RC bridges [Paper presentation]. COMPDYN 2017 - Proc. 6th Int. Conf. Comput. Methods Struct. Dyn. Earthq. Eng. (Vol. 1, pp. 2149–2160). Eccomas Proceedia. https://doi.org/10.7712/120117.5556.18147.
  • Martin-Sanz, H., Chatzi, E., & Brühwiler, E. (2016). The use of ultra high performance fibre reinforced cement-based composites in rehabilitation projects: A review.[Paper presentation] In V. Saouma, J. Bolander, & E. Landis (Eds.), 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. https://doi.org/10.21012/fc9.219
  • Massicotte, B., Dagenais, M.-A., & Lagier, F. (2013). Performance of UHPFRC jackets for the seismic strengthening of bridge piers. RILEM-Fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced (pp. 89–98). Springer.
  • Moriasi, D. N., Arnold, J. G., Liew, M. W V., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed in simulations. American Society of Agricultural and Biological Engineers, 50, 885–900.
  • Mushgil, H. M., Alani, H. A., & George, L. E. (2015). Comparison between resilient and standard back propagation algorithms efficiency in pattern recognition. International Journal of Scientific and Engineering Research, 6, 773–778.
  • Naaman, A. E., & Reinhardt, H. W. (2007). Proposed classification of HPFRC composites based on their tensile response. Materials and Structures, 39(5), 547–555. https://doi.org/10.1617/s11527-006-9103-2
  • Nash, E., & Sutcliffe, V. (1970). River flow forecasting through conceptual models. Part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34(2), 172–184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  • Parra-Montesinos, G., & Wight, J. K. (2000). Seismic behavior, strength and retrofit of RC column-to-steel beam connections. nisee.berkeley.edu. Retrieved from http://nisee.berkeley.edu/elibrary/Text/S37269
  • Prasad, N., Singh, R., & Lal, S. P. (2013). Comparison of back propagation and resilient propagation algorithm for spam classification [Paper presentation]. Proc. Int. Conf. Comput. Intell. Model. Simul. (pp. 29–34). https://doi.org/10.1109/CIMSim.2013.14. IEEE.
  • Pyo, S., El-Tawil, S., & Naaman, A. E. (2016). Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cement and Concrete Research, 88, 144–156. https://doi.org/10.1016/j.cemconres.2016.07.003
  • R Core Team. (2018). R: A language and environment for statistical computing. https://www.r-project.org/.
  • Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501–1511. https://doi.org/10.1016/0008-8846(95)00144-2
  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519
  • Roth, T. (2016). Working with the quality tools package, 35. http://www.r-qualitytools.org.
  • Ruiz-Pinilla, J. C., Pallarés, F. J., Gimenez, E., & Calderón, P. A. (2014). Experimental tests on retrofitted RC beam-column joints underdesigned to seismic loads. Engineering Structures, 59, 702–714. https://doi.org/10.1016/j.engstruct.2013.11.008
  • Ryu, G. S., Kim, S. H., Ahn, G. H., & Koh, K. T. (2012). Evaluation of the direct tensile behavioral characteristics of UHPC using twisted steel fibers. Advanced Materials Research, 602–604, 96–101. https://doi.org/10.4028/www.scientific.net/AMR.602-604.96
  • Schmidt, C., & Schmidt, M. (2012). Whitetopping’ of asphalt and concrete pavements with thin layers of ultra-high-performance concrete - Construction and economic efficiency. In: M. Fröhlich & S. Piotrowski (Eds.), 3rd Int. Symp. UHPC Nanotechnol. High Perform. Constr. Mater. (pp. 921–927). Kassel University.
  • Shaaban, M., & Ahmed, S. (2016). Development of ultra-high performance concrete jointed precast decks and concrete piles in integral abutment bridges. In First Int. Symp. Jointless Sustain. Bridg., Fujian, China. https://www.academia.edu/25363851/development_of_ultra-high_performance_concrete_for_jointed_precast_decks_and_concrete_piles_in_integral_abutment_bridges.
  • Soliman, N. A., & Tagnit-Hamou, A. (2017a). Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 139, 374–383. https://doi.org/10.1016/j.conbuildmat.2017.02.084
  • Soliman, N. A., & Tagnit-Hamou, A. (2017b). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243–252. https://doi.org/10.1016/j.conbuildmat.2017.03.187
  • Soliman, N. A., & Tagnit-Hamou, A. (2017c). Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete. ACI Materials Journal, 114, 847–858. https://doi.org/10.14359/51701001
  • Soranakom, C., & Mobasher, B. (2008). Correlation of tensile and flexural responses of strain softening and strain hardening cement composites. Cement Concr. Compos. 30(6), 465–477. https://doi.org/10.1016/j.cemconcomp.2008.01.007
  • Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall – runoff models. Applied Soft Computing, 6(3), 295–306. https://doi.org/10.1016/j.asoc.2005.02.002
  • Taghaddos, H., Mahmoudzadeh, F., Pourmoghaddam, A., & Shekarchizadeh, M. (2004). Prediction of compressive strength behaviour in RPC with applying an adaptive network-based fuzzy interface system. In: Proc. Int. Symp. Ultra High Perform (pp. 273–284). Kassel University Press.
  • Tagnit-Hamou, A., Soliman, N. A., & Omran, A. (2016). Green ultra - high - performance glass concrete. First Int. Interact. Symp. UHPC – 2016, 3, 1–10.
  • Tayeh, B. A., Abu Bakar, B. H., Megat Johari, M. A., & Voo, Y. L. (2013). Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation - A review. Procedia Engineering, 54, 525–538. https://doi.org/10.1016/j.proeng.2013.03.048
  • Van Tuan, N., Ye, G., van Breugel, K., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials, 25(4), 2030–2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046
  • Vasconez, R. M., Naaman, A. E., & Wight, J. K. (1998). Behavior of HPFRC connections for precast concrete frames under reversed cyclic loading. PCI Journal, 43(6), 58–71. https://doi.org/10.15554/pcij.11011998.58.71
  • Vega Vargas, C. J. (2015). Comportamiento dinámico de muros de mampostería no estructural reforzados mediante polímeros reforzados con fibra de carbono. CFRP, Escuela Colombiana de Ingeniería Julio Garavito.
  • Wille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC ) under direct tensile loading. Cement and Concrete Composites, 48, 53–66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
  • Wille, K., Kim, D., & Naaman, A. E. (2011). Strain hardening UHP-FRC with low fiber contents. Materials and Structures 44, 538–598. https://doi.org/10.1617/s11527-010-9650-4
  • Yokota, H., Rokugo, K., & Sakata, N. (2008). JSCE-2008 Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC). Japan Society of Civil Engineers. https://doi.org/10.1016/j.dci.2010.01.003.
  • Yoo, D. Y., & Kim, M. J. (2019). High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers. Construction and Building Materials, 209, 354–363. https://doi.org/10.1016/j.conbuildmat.2019.03.096
  • Yu, R., Spiesz, P., & Brouwers, H. J. H. (2015). Development of ultra-high performance fibre reinforced concrete (UHPFRC): Towards an efficient utilization of binders and fibres. Construction and Building Materials, 79, 273–282. https://doi.org/10.1016/j.conbuildmat.2015.01.050
  • Zhang, J., Zhao, Y., & Li, H. (2017). Experimental investigation and prediction of compressive strength of ultra-high performance concrete (UHPC) containing supplementary cementitious materials, Hindawi. Advances in Materials Science and Engineering, 2017, 1–525. https://doi.org/10.1155/2017/4563164
  • Zhang, J., Zhao, Y., & Li, H. (2017). Experimental investigation and prediction of compressive strength of ultra-high performance concrete containing supplementary cementitious materials. Advances in Materials Science and Engineering, 2017, 4563164. https://doi.org/10.1155/2017/4563164

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.