252
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Numerical study on crack propagation of rock mass using the time sequence controlled and notched blasting method

, , , , , & show all
Pages 6714-6732 | Received 18 Oct 2020, Accepted 12 Jul 2021, Published online: 28 Jul 2021

References

  • Bendezu, M., Romanel, C., & Roehl, D. (2017). Finite element analysis of blast-induced fracture propagation in hard rocks. Computers & Structures, 182, 1–13. https://doi.org/10.1016/j.compstruc.2016.11.006
  • Chen, K. (1993). Industrial test research on a new method of sequential control blasting fracture. Blasting Equipment, 4, 29–31.
  • Deng, Y. X., Zhang, Z. L., Guan, Z. Q., Yang, Z. S., Ma, H. H., & Shen, Z. W. (2020). Research and application of root smooth blasting mechanism of shaped charge in spiral tube. Explosion and Shock Waves, 40(1), 92–99.
  • Fourney, W. L., Barker, D. B., & Holloway, D. C. (1983). Model studies of well stimulation using propellant charges. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(2), 91–101. https://doi.org/10.1016/0148-9062(83)90330-3
  • González-Herrera, A., & Zapatero, J. (2005). Influence of minimum element size to determine crack closure stress by the finite element method. Engineering Fracture Mechanics, 72(3), 337–355. https://doi.org/10.1016/j.engfracmech.2004.04.002
  • Guo, J. S., Ma, L. Q., Wang, Y., & Wang, F. T. (2017). Hanging wall pressure relief mechanism of horizontal section top-coal caving face and its application—A case study of the Urumqi Coalfield, China. Energies, 10(9), 1371. https://doi.org/10.3390/en10091371
  • Gushanov, A. R. (2001). Dependence of the shape of a detonation wave front on the detonation wave velocity upon detonation of a cylindrical charge. Combustion, Explosion, and Shock Waves, 37(1), 113–118. ‏ https://doi.org/10.1023/A:1002833128951
  • Gustavo, M. A.,Víctor, R. D. P., Francisco, G., & David, A. C. (2018). Numerical simulation of fracture of concrete at different loading rates by using the cohesive crack model. Theoretical & Applied Fracture Mechanics, 96, 308–325.
  • Huang, J. H., Li, X. P., Luo, Y., Liu, T. T., Dong, Q., Xu, K., & Tang, C. X. (2020). Numerical simulation of influence of filled joint on the crack formed by notch hole blast. European Journal of Environmental and Civil Engineering, 24(4), 423–439. https://doi.org/10.1080/19648189.2017.1392366
  • Jayasinghe, L. B., Shang, J., Zhao, Z., & Goh, A. T. C. (2019). Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence. Computers and Geotechnics, 116, 103207. https://doi.org/10.1016/j.compgeo.2019.103207
  • Li, Q., Wang, P. H., Yang, R. S., Tian, X. B., Han, W. G, & Zhang, E. M. (2009). Experimental investigation on dynamic mechanical behaviors of cracks induced by V-notch borehole blasting with dynamic caustics. Explosion and Shock Waves, 29(4), 413–418.
  • Li, X. P., Lv, J. L.,Huang, J. H., Luo, Y., Liu, T. T.,& Russo, S.(2019). Numerical simulation research of smooth wall blasting using the timing sequence control method under different primary blast hole shapes. Shock and Vibration, 2019, 1–16. https://doi.org/10.1155/2019/2425904
  • Li, X. P., Huang, J. H., Luo, Y., & Chen, P. P. (2017). A study of smooth wall blasting fracture mechanisms using the timing sequence control method. International Journal of Rock Mechanics and Mining Sciences, 92, 1–8. https://doi.org/10.1016/j.ijrmms.2016.12.001
  • Ma, C. D., Xie, W. B., Liu, Z. L., Li, Q. Y., Xu, J. Q., & Tan, G. S. (2020). A new technology for smooth blasting without detonating cord for rock tunnel excavation. Applied Sciences, 10(19), 6764. https://doi.org/10.3390/app10196764
  • Meng, N. K. , Chen, Y. , Bai, J. B. , Wang, X. Y. , Wu, W. D., & Wu, B. W. (2020). Numerical simulation of directional fracturing by shaped charge blasting. Energy Science & Engineering, 8(5), 1824–1839. https://doi.org/10.1002/ese3.635
  • Moszynski, J. R. (1983). The dynamics of explosion and its use. Nuclear Technology, 60(1), 167–167. https://doi.org/10.13182/NT83-A33116
  • Rathore, S. S., & Bhandari, S. (2007). Controlled fracture growth by blasting while protecting damages to remaining rock. Rock Mechanics and Rock Engineering, 40(3), 317–326. https://doi.org/10.1007/s00603-005-0080-5
  • Shu, Y., Shao, P., Dong, C., Cao, Z., Yi, X. W., & Bergillos, R. J. (2019). Influence of rock strength on the propagation of slotted cartridge blasting-induced directional cracks. Advances in Civil Engineering, 2019(7), 1–12. https://doi.org/10.1155/2019/5752189
  • TCP/C2. (2016) The Construction Bidding Documents with Civil Engineering and Metal Structure Installation Project on the Water Conveyance and Generation System of Tianchi Pumped Storage Power Station. China’s Hydropower Consulting Group East China Survey Design and Research Institute (in Chinese).
  • Wang, Y. B. (2017). Study of the dynamic fracture effect using slotted cartridge decoupling charge blasting. International Journal of Rock Mechanics and Mining Sciences, 96, 34–46. https://doi.org/10.1016/j.ijrmms.2017.04.015
  • Williams, M. L. (1952). Stress singularities resulting from various boundary conditions in angular corners of plates in extension. Journal of Applied Mechanics, 19(4), 526–528.
  • Xu, M. N., Li, X. P., Liu, T. T., Luo, Y., Huang, J. H., Wang, G., Wang, Y., & Gao, W. (2021). A study on hollow effect and safety design of deep crossing caverns under blasting vibration. Tunnelling and Underground Space Technology, 111, 103866. https://doi.org/10.1016/j.tust.2021.103866
  • Yang, J. H., Yao, C., Jiang, Q. H., Lu, W. B., & Jiang, S. H. (2017). 2D numerical analysis of rock damage induced by dynamic in-situ stress redistribution and blast loading in underground blasting excavation. Tunnelling and Underground Space Technology, 70, 221–232. https://doi.org/10.1016/j.tust.2017.08.007
  • Yang, L. Y., Yang, A. Y., Chen, S. Y., Fang, S. Z., Huang, C., & Xie, H. Z. (2021). Model experimental study on the effects of in situ stresses on pre-splitting blasting damage and strain development. International Journal of Rock Mechanics and Mining Sciences, 138(138), 104587. https://doi.org/10.1016/j.ijrmms.2020.104587
  • Yang, R. S., Ding, C. X., Li, Y. L., Yang, L. Y., & Zhao, Y. (2019). Crack propagation behavior in slit charge blasting under high static stress conditions. International Journal of Rock Mechanics and Mining Sciences, 119, 117–123. https://doi.org/10.1016/j.ijrmms.2019.05.002
  • Yang, Y. Z., Shao, Z. S., Mi, J. F., Xiong, X. F., & Gong, F. Q. (2018). Effect of adjacent hole on the blast-induced stress concentration in rock blasting. Advances in Civil Engineering, 2018, 1–13. https://doi.org/10.1155/2018/5172878
  • Ye, H. W., Tang, K., Wan, T., Wang, C., Lei, T., Li, X. P.,& Saliou, C. M. (2017). Optimization of time sequence controlled pre-splitting blasting parameters and its application. Explosion and Shock Waves, 37(3), 502–509.
  • Yi, C. P., Johansson, D., & Greberg, J. (2017). Effects of in-situ stresses on the fracturing of rock by blasting. Computers and Geotechnics, 104, 321–330. https://doi.org/10.1016/j.compgeo.2017.12.004
  • Zhao, J. J., Zhang, Y., & Ranjith, P. G. (2017). Numerical simulation of blasting-induced fracture expansion in coal masses. International Journal of Rock Mechanics and Mining Sciences, 100, 28–39. https://doi.org/10.1016/j.ijrmms.2017.10.015
  • Zhao, J. J., Zhang, Y., & Ranjith, P. G. (2020). Numerical modelling of blast-induced fractures in coal masses under high in-situ stresses. Engineering Fracture Mechanics, 225, 106749. https://doi.org/10.1016/j.engfracmech.2019.106749
  • Zhu, R. G. (1986). Study for time-order-controlled fracture in the exaction of lager rock caverns. Symposium Large Rock Caverns in Finland.
  • Zhu, Y. H., & Xu, X. P. (2017). Damage control characteristics for notched blasting based on the damage mechanism. Journal of China Coal Society, 42(S2), 369–376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.