187
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

High temperature effects on the properties of a high porosity calcareous stone building material

, , &
Pages 6733-6745 | Received 13 Feb 2020, Accepted 22 Jul 2021, Published online: 02 Aug 2021

References

  • Andriani, G. F., & Germinario, L. (2014). Thermal decay of carbonate dimension stones: Fabric, physical and mechanical changes. Environmental Earth Sciences, 72(7), 2523–2539. https://doi.org/10.1007/s12665-014-3160-6
  • Beck, K., Janvier-Badosa, S., Brunetaud, X., Török, Á., & Al-Mukhtar, M. (2016). Non-destructive diagnosis by colorimetry of building stone subjected to high temperatures. European Journal of Environmental and Civil Engineering, 20(6), 643–655. https://doi.org/10.1080/19648189.2015.1035804
  • Benavente, D., Garcı́a del Cura, M. A., Fort, R., & Ordóñez, S. (2004). Durability estimation of porous building stones from pore structure and strength. Engineering Geology, 74(1–2), 113–127. https://doi.org/10.1016/j.enggeo.2004.03.005
  • Bonomo, A. E., Minervino Amodio, A., Prosser, G., Sileo, M., & Rizzo, G. (2020). Evaluation of soft limestone degradation in the Sassi UNESCO site (Matera, Southern Italy). Journal of Cultural Heritage, 42, 191–201. https://doi.org/10.1016/j.culher.2019.07.017
  • Brotóns, V., Tomás, R., Ivorra, S., & Alarcón, J. C. (2013). Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Engineering Geology, 167, 117–127. https://doi.org/10.1016/j.enggeo.2013.10.012
  • Brown, E. T. (1981). I.S. for R.M.C. on T. Methods, rock characterization, testing & monitoring. ISRM suggested methods. Pergamon Press.
  • Calia, A., Colangiuli, D., Lettieri, M., Quarta, G., & Masieri, M. (2016). Microscopic techniques and a multi-analytical approach to study the fire damage of the painted stuccoes from the Petruzzelli Theatre (Bari, Southern Italy). Microchemical Journal, 126, 42–53. https://doi.org/10.1016/j.microc.2015.11.049
  • Calia, A., Lettieri, M., Mecchi, A., & Quarta, G. (2015). The role of the petrophysical characteristics on the durability and conservation of some porous calcarenites from Southern Italy. In R. Prikryl, A. Torok, M. Gomez-Heras, K. Miskovsky, & M. Theodoridou (Eds.), Sustainable use of traditional geomaterials in construction practice, geological society. Special Publication, London.
  • Chaki, S., Takarli, M., & Agbodjan, W. P. (2008). Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22(7), 1456–1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002
  • CIE. (1977). CIE recommendations on uniform color spaces. Color-difference equations, and metric color terms. Color Research & Application 2, 5–6. https://doi.org/10.1002/j.1520-6378.1977.tb00102.x
  • Delegou, E. T., & Apostolopoulou, M. (2019). The effect of fire on building materials: The case study of the Varnakova monastery cells in Central Greece. Heritage, 2(2), 1233–1258. https://doi.org/10.3390/heritage2020080
  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (Ed.), Classification of carbonate rocks (vol. 1, pp. 108–121). American Association of Petroleum Geologists Memoir.
  • Eren, Ö., & Bahali, M. (2005). Some engineering properties of natural building cut stones of Cyprus. Construction and Building Materials, 19(3), 213–222. https://doi.org/10.1016/j.conbuildmat.2004.05.011
  • European Commission. (2001). Memorandum of understanding for the implementation of a European concerted research action designated as COST C17. Built heritage: Fire loss to historic buildings. http://www.cost.eu/media/publications?pub-domain=0&pub-year=*&pub-action=E12
  • Festa, V., Fiore, A., Luisi, M., Miccoli, M. N., & Spalluto, L. (2018). Petrographic features influencing basic geotechnical parameters of carbonate soft rocks from Apulia (Southern Italy). Engineering Geology, 233, 76–97. https://doi.org/10.1016/j.enggeo.2017.12.009
  • Földvári, M. (2011). Handbook of thermogravimetric system of minerals and its use in geological practice. Geological Institute of Hungary, 180p.
  • Franzoni, E., Sassoni, E., Scherer, G. W., & Naidu, S. (2013). Artificial weathering of stone by heating. Journal of Cultural Heritage, 14(3), e85–e93. https://doi.org/10.1016/j.culher.2012.11.026
  • Glover, P. W. J., Baud, P., Darot, M., Meredith, P. G., Boon, S. A., LeRavalec, M., Zoussi, S., & Reuschlé, T. (1995). Α/Β phase transition in quartz monitored using acoustic emissions. Geophysical Journal International, 120(3), 775–782. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x
  • Gomez-Heras, M., Alvarez de Buergo, R., Fort, M., Hajpál, A., & Török, M. J. (2006). Varas, Evolution of porosity in Hungarian building stones after simulated burning. In Heritage weathering and conservation HWC-2006 (pp. 513–519). Taylor & Francis.
  • Gomez-Heras, M., Figueiredo, C., Varas, M. J., Mauricio, A., Álvarez De Buergo, L., Aires-Barros, M., & Fort, R. (2006). Digital image analysis contribution to the evaluation of the mechanical decay of granitic stones affected by fires. In S. K. Kourkoulis (Ed.), Fracture and failure of natural building stones. Applications in the restoration of ancient monuments (pp. 427–437). Springer.
  • Gomez-Heras, M., McCabe, S., Smith, B. J., & Fort, R. (2009). Impacts of fire on stone-built heritage. Journal of Architectural Conservation, 15(2), 47–58. https://doi.org/10.1080/13556207.2009.10785047
  • Ibrahim, R. K., Ismail, N. R., & Omar, H. M. (2017). Thermal effects on compressive strength of local limestone and claystone. ARO-The Scientific Journal of Koya University, 5(2), 61–66. https://doi.org/10.14500/aro.10283
  • Ingham, J. P. (2009). Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structures. Materials Characterization, 60(7), 700–709. https://doi.org/10.1016/j.matchar.2008.11.003
  • Jansen, D. P., Carlson, S. R., Young, R. P., & Hutchins, D. A. (1993). Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite. Journal of Geophysical Research, 98, 22231–22243. https://doi.org/10.1029/93jb01816
  • Kourkoulis, S. K., & Ganniari-Papageorgiou, E. (2010). Experimental study of the size- and shape-effects of natural building stones. Construction and Building Materials, 24(5), 803–810. https://doi.org/10.1016/j.conbuildmat.2009.10.027
  • Labus, M. (2017). Thermal methods implementation in analysis of fine-grained rocks containing organic matter. Journal of Thermal Analysis and Calorimetry, 129(2), 965–973. https://doi.org/10.1007/s10973-017-6259-7
  • Luque, A., Ruiz-Agudo, E., Cultrone, G., Sebastián, E., & Siegesmund, S. (2011). Direct observation of microcrack development in marble caused by thermal weathering. Environmental Earth Sciences, 62(7), 1375–1386. https://doi.org/10.1007/s12665-010-0624-1
  • Martinho, E., & Dionísio, A. (2020). Assessment techniques for studying the effects of fire on stone materials: A literature review. International Journal of Architectural Heritage, 14(2), 275–225. https://doi.org/10.1080/15583058.2018.1535008
  • Martinho, E., Mendes, M., & Dionísio, A. (2017). 3D imaging of P-waves velocity as a tool for evaluation of heat induced limestone decay. Construction and Building Materials, 135, 119–128. https://doi.org/10.1016/j.conbuildmat.2016.12.192
  • Menéndez, B., David, C., & Darot, M. (1999). A study of the crack network in thermally and mechanically cracked granite samples using confocal scanning laser microscopy. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(7), 627–632. https://doi.org/10.1016/S1464-1895(99)00091-5
  • Ozguven, A., & Ozcelik, Y. (2014). Effects of high temperature on physico-mechanical properties of Turkish natural building stones. Engineering Geology, 183, 127–136. https://doi.org/10.1016/j.enggeo.2014.10.006
  • Sengun, N. (2014). Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arabian Journal of Geosciences, 7(12), 5543–5551. https://doi.org/10.1007/s12517-013-1177-x
  • Siegesmund, S., Ullemeyer, K., Weiss, T., & Tschegg, E. K. (2000). Physical weathering of marbles caused by anisotropic thermal expansion. International Journal of Earth Sciences, 89(1), 170–182. https://doi.org/10.1007/s005310050324
  • Sippel, J., Siegesmund, S., Weiss, T., Nitsch, K.-H., & Korzen, M. (2007). Decay of natural stones caused by fire damage. Geological Society, London, Special Publications, 271(1), 139–151. https://doi.org/10.1144/GSL.SP.2007.271.01.15
  • Ugur, I., Sengun, N., Demirdag, S., & Altindag, R. (2014). Analysis of the alterations in porosity features of some natural stones due to thermal effect. Ultrasonics, 54(5), 1332–1336. https://doi.org/10.1016/j.ultras.2014.01.013
  • Vázquez, P., Shushakova, V., & Gómez-Heras, M. (2015). Influence of mineralogy on granite decay induced by temperature increase: Experimental observations and stress simulation. Engineering Geology, 189, 58–67. https://doi.org/10.1016/j.enggeo.2015.01.026
  • Yavuz, H., Demirdag, S., & Caran, S. (2010). Thermal effect on the physical properties of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences, 47(1), 94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.