270
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effectiveness of various polysaccharides for controlling properties of alkali-activated manganese-rich slag pastes

, ORCID Icon, , &
Pages 6862-6879 | Received 17 Nov 2020, Accepted 30 Jul 2021, Published online: 29 Aug 2021

References

  • Abdollahnejad, Z., Kheradmand, M., & Pacheco-Torgal, F. (2017). Short-term compressive strength of fly ash and waste glass alkali-activated cement-based binder mortars with two biopolymers. Journal of Materials in Civil Engineering, 29(7), 04017045. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001920
  • Allahverdi, A., & Ahmadnezhad, S. (2014). Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Technology, 251, 41–51. https://doi.org/10.1016/j.powtec.2013.10.023
  • ASTM C109. (2008). Standard test method for compressive strength of hydraulic cement mortars. ASTM Int. West.
  • ASTM C191. (2013). Standard test methods for time of setting of hydraulic cement by Vicat needle (Vol. 100, pp. 12959–19428). American Society for Testing and Materials.
  • Aydın, S., & Baradan, B. (2012). Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Materials and Design, 35, 374–383. https://doi.org/10.1016/j.matdes.2011.10.005
  • Ben Haha, M., Lothenbach, B., Saout, G. L., & Winnefeld, F. (2012). Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cement and Concrete Research, 42(1), 74–83. https://doi.org/10.1016/j.cemconres.2011.08.005
  • Ben Haha, M., Saout, G. L., Winnefeld, F., & Lothenbach, B. (2011). Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cement and Concrete Research, 41(3), 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016
  • Bernal, S. A., de Gutiérrez, R. M., Pedraza, A. L., Provis, J. L., Rodriguez, E. D., & Delvasto, S. (2011). Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research, 41(1), 1–8. https://doi.org/10.1016/j.cemconres.2010.08.017
  • Bezerra, U. T., Ferreira, R. M., & Castro-Gomes, J. P. (2011). The effect of latex and chitosan biopolymer on concrete properties and performance. Key Engineering Materials, 466, 37–46. in https://doi.org/10.4028/www.scientific.net/KEM.466.37
  • Brough, A. R., & Atkinson, A. (2002). Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cement and Concrete Research, 32(6), 865–879. https://doi.org/10.1016/S0008-8846(02)00717-2
  • Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23(7), 1273–1335. https://doi.org/10.1016/S0079-6700(97)00039-7
  • Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., & Rattanasak, U. (2009). Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Management (New York, NY), 29(2), 539–543. https://doi.org/10.1016/j.wasman.2008.06.023
  • Choi, S., Kim, J., Oh, S., & Han, D. (2017). Hydro-thermal reaction according to the CaO/SiO2 mole-ratio in silico-manganese slag. Journal of Material Cycles and Waste Management, 19(1), 374–381. https://doi.org/10.1007/s10163-015-0431-6
  • Datta, C. (2011). Starch as a biopolymer in construction and civil engineering. In Handbook of bioplastics & biocomposites engineering applications (pp. 317–344).
  • Davidovits, J. (1993). Geopolymer cements to minimise carbon dioxide greenhouse warming. Ceramic Transactions, 37(1), 165–182.
  • Deans, J. R. (1994, August 09). Removing polyvalent metals from aqueous waste streams with chitosan and halogenating agents. Google Patents.
  • Deans, J. R., & Dixon, B. G. (1992). Uptake of Pb2+ and Cu2+ by novel biopolymers. Water Research, 26(4), 469–472. https://doi.org/10.1016/0043-1354(92)90047-8
  • Djobo, J. N. Y., Tchakoute, H. K., Ranjbar, N., Elimbi, A., Tchadjie, L. N., & Njopwouo, D. (2016). Gel composition and strength properties of alkali‐activated oyster shell‐volcanic ash: Effect of synthesis conditions. Journal of the American Ceramic Society, 99(9), 3159–3166. https://doi.org/10.1111/jace.14332
  • Essaidi, N., Samet, B., Baklouti, S., & Rossignol, S. (2014). The role of hematite in aluminosilicate gels based on metakaolin. Ceramics - Silikati, 58(1), 1–11.
  • Fernández Jiménez, A. M. (2000). Cementos de escorias activadas alcalinamente: Influencia de las variables y modelización del proceso.
  • Funke, H., Gelbrich, S., & Kroll, L. (2016). The Durability and performance of short fibers for a newly developed alkali-activated binder. Fibers, 4(4), 11. https://doi.org/10.3390/fib4010011
  • Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., & Macphee, D. E. (2011). Compatibility studies between NASH and CASH gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research, 41(9), 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006
  • Glukhovsky, V. D., Rostovskaja, G. S., & Rumyna, G. V. (1980). High strength slag-alkaline cements. Proceedings of the Seventh International Congress on the Chemistry of Cement, vol. 3, pp. 164–168.
  • Hanser, W. C. (1960). Actions of calcium sulfate and admixtures in Portland cement pastes. Symposium on Effect of Water-Reducing Admixtures and Set-Retarding Admixtures on Properties of Concrete. ASTM International. .
  • Ismail, I., Bernal, S. A., Provis, J. L., San Nicolas, R., Hamdan, S., & van Deventer, J. S. J. (2014). Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cement and Concrete Composites, 45, 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006
  • Jha, I. N., Iyengar, L., & Rao, A. V. S. P. (1988). Removal of cadmium using chitosan. Journal of Environmental Engineering, 114(4), 962–974. https://doi.org/10.1061/(ASCE)0733-9372(1988)114:4(962)
  • John, M. J. (2008). Bio-based structural composite materials for aerospace applications.
  • Kamseu, E., Lancellotti, I., Sglavo, V. M., Modolo, L., & Leonelli, C. (2016). Design of inorganic polymer mortar from ferricalsialic and calsialic slags for indoor humidity control. Materials (Basel), 9(6), 410. https://doi.org/10.3390/ma9060410
  • Kim, D., Petrisor, I. G., & Yen, T. F. (2005). Evaluation of biopolymer-modified concrete systems for disposal of cathode ray tube glass. Journal of the Air & Waste Management Association (1995), 55(7), 961–969. https://doi.org/10.1080/10473289.2005.10464682
  • Knaus, S., & Bauer-Heim, B. (2003). Synthesis and properties of anionic cellulose ethers: Influence of functional groups and molecular weight on flowability of concrete. Carbohydrate Polymers, 53(4), 383–394. https://doi.org/10.1016/S0144-8617(03)00106-1
  • Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261–1277. https://doi.org/10.1016/j.mineng.2007.07.011
  • Kosbar, L. L., Gelorme, J. D., Japp, R. M., & Fotorny, W. T. (2000). Introducing biobased materials into the electronics industry. Journal of Industrial Ecology, 4(3), 93–105. https://doi.org/10.1162/108819800300106401
  • Kumar, S., García-Triñanes, P., Teixeira-Pinto, A., & Bao, M. (2013). Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cement and Concrete Composites, 40, 7–13. https://doi.org/10.1016/j.cemconcomp.2013.03.026
  • Lemougna, P. N., MacKenzie, K. J. D., Jameson, G. N. L., Rahier, H., & Melo, U. F. C. (2013). The role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: A 57 Fe Mössbauer spectroscopy study. Journal of Materials Science, 48(15), 5280–5286. https://doi.org/10.1007/s10853-013-7319-4
  • Li, Z., & Zhang, L. (2016). Fly ash-based geopolymer with kappa-carrageenan biopolymer. In Biopolymers and biotech admixtures for eco-efficient construction materials (pp. 173–192). Elsevier.
  • Li, Z., Chen, R., & Zhang, L. (2013). Utilisation of chitosan biopolymer to enhance fly ash-based geopolymer. Journal of Materials Science, 48(22), 7986–7993. https://doi.org/10.1007/s10853-013-7610-4
  • Lima, C., Caggiano, A., Faella, C., Martinelli, E., Pepe, M., & Realfonzo, R. (2013). Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Construction and Building Materials, 47, 547–559. https://doi.org/10.1016/j.conbuildmat.2013.04.051
  • Ma, B., Peng, Y., Tan, H., Jian, S., Zhi, Z., Guo, Y., Qi, H., Zhang, T., & He, X. (2018). Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticised by polycarboxylate superplasticiser. Construction and Building Materials, 160, 341–350. https://doi.org/10.1016/j.conbuildmat.2017.11.010
  • McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010
  • Menefee, E., & Hautala, E. (1978). Soil stabilisation by cellulose xanthate. Nature, 275(5680), 530–532. https://doi.org/10.1038/275530a0
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
  • Nasab, G. M., Golestanifard, F., & MacKenzie, K. J. D. (2014). The effect of the SiO2/Na2O ratio in the structural modification of metakaolin-based geopolymers studied by XRD, FTIR and MAS-NMR. Journal of Ceramic Science and Technology, 5(3), 185–191.
  • Navarro, R., Zornoza, E., Garcés, P., Sánchez, I., & Alcocel, E. G. (2017). Optimization of the alkali activation conditions of ground granulated SiMn slag. Construction and Building Materials, 150, 781–791. https://doi.org/10.1016/j.conbuildmat.2017.06.064
  • Orts, W. J., Sojka, R. E., & Glenn, G. M. (2000). Biopolymer additives to reduce erosion-induced soil losses during irrigation. Industrial Crops and Products, 11(1), 19–29. https://doi.org/10.1016/S0926-6690(99)00030-8
  • Pacheco-Torgal, F., Ivanov, V., Karak, N., & Jonkers, H. (2016). Biopolymers and biotech admixtures for eco-efficient construction materials. Woodhead Publishing.
  • Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A., & Chindaprasit, P. (2014). Handbook of alkali-activated cements, mortars and concretes. Elsevier.
  • Plank, J. (2004). Applications of biopolymers and other biotechnological products in building materials. Applied Microbiology and Biotechnology, 66(1), 1–9. https://doi.org/10.1007/s00253-004-1714-3
  • Plank, J. (2005). Applications of biopolymers in construction engineering. Biopolymers, Biology, Chemistry, Biotechnology, Applications, 10
  • Puertas, F., Varga, C., & Alonso, M. M. (2014). Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution. Cement and Concrete Composites, 53, 279–288. https://doi.org/10.1016/j.cemconcomp.2014.07.012
  • Purnell, P. (2012). Material nature versus structural nurture: The embodied carbon of fundamental structural elements. Environmental Science & Technology, 46(1), 454–461. https://doi.org/10.1021/es202190r
  • Ramachandran, V. S. (1996). Concrete admixtures handbook: Properties, science and technology. William Andrew.
  • Regourd, M. (1980). Structure and behavior of slag Portland cement hydrates. Proceedings of 7th International Congress on the Chemistry of Cement, III–II2.
  • Rhim, J.-W., & Ng, P. K. W. (2007). Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in Food Science and Nutrition, 47(4), 411–433. https://doi.org/10.1080/10408390600846366
  • Roy, D. M. (1999). Alkali-activated cements opportunities and challenges. Cement and Concrete Research, 29(2), 249–254. https://doi.org/10.1016/S0008-8846(98)00093-3
  • Ruiz-Hitzky, E., Ariga, K., & Lvov, Y. M. (2008). Bio-inorganic hybrid nanomaterials: Strategies, synthesis, characterisation and applications. John Wiley & Sons.
  • Sakata, N., Maruyama, K., & Minami, M. (2004). 20 basic properties and effects of welan gum on self-consolidating concrete. In Production methods and workability of concrete, CRC Press (Vol. 32, p. 237).
  • Satti, S. A. A., & Ahmed, Y. H. (2018). Use of gum Arabic (acacia seyal) as concrete admixture.
  • Shchipunov, Y. A., & Karpenko, T. Y. (2004). Hybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique. Langmuir, 20(10), 3882–3887. https://doi.org/10.1021/la0356912
  • Shchipunov, Y. A., Karpenko, T. Y., & Krekoten, A. V. (2005). Hybrid organic–inorganic nanocomposites fabricated with a novel biocompatible precursor using sol-gel processing. Composite Interfaces, 11(8–9), 587–607. https://doi.org/10.1163/1568554053148816
  • Shi, C., Krivenko, P. V., & Roy, D. (2006). Alkali-activated cements and concretes. Taylor & Francis.
  • Shi, C., Roy, D., & Krivenko, P. (2003). Alkali-activated cements and concretes. CRC Press.
  • Song, S., Sohn, D., Jennings, H. M., & Mason, T. O. (2000). Hydration of alkali-activated ground granulated blast furnace slag. Journal of Materials Science, 35(1), 249–257. https://doi.org/10.1023/A:1004742027117
  • Steinbüchel, A. (2003). General aspects and special applications. Wiley-VCH.
  • U.S. Congress, Office of Technology Assessment. (1993). Biopolymers: Making materials nature’s way.
  • Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lukey, G. C. (2003). The characterisation of source materials in fly ash-based geopolymers. Materials Letters, 57(7), 1272–1280. https://doi.org/10.1016/S0167-577X(02)00971-0
  • Vekshin, N. L. (2013). Photonics of biopolymers. Springer Science & Business Media.
  • Wang, S.-D., & Scrivener, K. L. (1995). Hydration products of alkali activated slag cement. Cement and Concrete Research, 25(3), 561–571. https://doi.org/10.1016/0008-8846(95)00045-E
  • Wu, Q. (1999). Effect of the ratio of water glass on properties of alkali-activated slag cement. Cement Engineering (in Chinese), 5, 10–11.
  • Yang, T., Zhu, H., & Zhang, Z. (2017). Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Construction and Building Materials, 153, 284–293. https://doi.org/10.1016/j.conbuildmat.2017.05.067

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.