118
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

One-dimensional rheological consolidation analysis considering self-weight stress and non-Darcian flow under time-dependent loading

, , , &
Pages 6993-7013 | Received 31 Oct 2020, Accepted 17 Aug 2021, Published online: 01 Sep 2021

References

  • Cai, Y. Q., Geng, X. Y., & Xu, C. J. (2007). Solution of one-dimensional finite-strain consolidation of soil with variable compressibility under cyclic loadings. Computers and Geotechnics, 34(1), 31–40. compgeo.2006.08.008.
  • Chen, X., Luo, Q., & Zhou, Q. (2014). Timedependent behaviour of interactive marine and terrestrial deposit clay. Geomechanics and Engineering, 7(3), 279–295. https://doi.org/10.12989/gae.2014.7.3.279
  • Cheng, T. B., Liu, Z. Y., & Zhang, J. (2012). One-dimensional consolidation of saturated clay under construction loadings considering Hansbo's flow. Journal of Zhengzhou University (Engineering Science), 33(01), 28–31. https://doi.org/10.3969/j.issn.1671-6833.2012.01.007(In Chinese).
  • Cheng, Z. J. (1958). One dimensional problems of consolidation and secondary time. Chinese Journal of Civil Engineering, 5(1), 1–9. https://doi.org/10.15951/j.tmgcxb.1958.01.001. (In Chinese).
  • Cui, J., Xie, K. H., & Cq, X. I. A. (2018). One-dimensional nonlinear consolidation of double layered structures soil under time-dependent loading. Journal of Central South University (Science and Technology), 49(7), 1710–1717. https://doi.org/10.11817/j.issn.1672-7207.2018.07.018. (In Chinese).
  • Deng, Y-e., Xie, H-p., Huang, R-q., & Liu, C-q. (2007). Law of nonlinear flow in saturated clays and radial consolidation. Applied Mathematics and Mechanics, 28(11), 1427–1436. https://doi.org/10.1007/s10483-007-1102-7
  • Feng, X. J., Chen, Z., & Li, Y. Y. (2019). Analytical solution for one-dimensional consolidation of soft clay soils with continuous drainage boundary under linear loading. Engineering Mechanics, 36(6), 219–226. https://doi.org/10.6052/j.issn.1000-4750.2018.05.0294(In Chinese).
  • Geng, X. Y., Xu, C. J., & Cai, Y. Q. (2006). Non‐linear consolidation analysis of soil with variable compressibility and permeability under cyclic loadings. International Journal for Numerical and Analytical Methods in Geomechanics, 30(8), 803–821. https://doi.org/10.1002/nag.505
  • Guo, H., Liu, G. B., & Zheng, R. Y. (2018). Thermal consolidation theory of saturated soils based on Merchant model. Chinese Journal of Rock Mechanics and Engineering, 37(6), 1489–1495. https://doi.org/10.13722/j.cnki.jrme.2017.1573(In Chinese).
  • Hansbo, S. (1960). Consolidation of clay with special reference to influence of vertical sand drains. Swedish Geotechnical Institute Proceeding, 18, 45–50.
  • Hansbo, S. (2003). Deviation from Darcy's law observed in one dimensional consolidation. Géotechnique, 53(6), 601–605. https://doi.org/10.1680/geot.53.6.601.37332
  • Hansbo, S., Jamiolkowski, M., & Kok, L. (1981). Consolidation by vertical drains. Géotechnique, 31(1), 45–66. https://doi.org/10.1680/geot.1981.31.1.45
  • Hsu, T.-W., & Liu, H.-J. (2013). Consolidation for radial drainage under time-dependent loading. Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2096–2103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000942
  • Hu, A. F., Xia, C. Q., Cui, J., Li, C. X., & Xie, K. H. (2018). Nonlinear consolidation analysis of natural structured clays under time-dependent loading. International Journal of Geomechanics, 18(2), 04017140. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001059
  • Hu, J., & Yao, Y. P. (2015). 1D-consolidation analysis based on UH model considering time effect. Journal of Beijing University of Aeronautics and Astronautics, 41(8), 1492–1498. https://doi.org/10.13700/j.bh.1001-5965.2014.0583
  • Kianfar, K., Indraratna, B., & Rujikiatkamjorn, C. (2013). Radial consolidation model incorporating the effects of vacuum preloading and non-Darcian flow. Géotechnique, 63(12), 1060–1073. P.163. https://doi.org/10.1680/geot.12
  • Le, T. M., Fatahi, B., Khabbaz, H., & Sun, W. (2017). Numerical optimization applying trust-region reflective least squares algorithm with constraints to optimize the non-linear creep parameters of soft soil. Applied Mathematical Modelling, 41(2017), 236–256.6/j.apm.2016.08.034.
  • Lei, H. Y., Ren, Q., Jiang, Y., & Jiang, M. J. (2019). Experimental evaluation of consolidation behavior of double-Layer soft soil ground. Journal of Testing and Evaluation, 47(1), 203–221, https://doi.org/10.1520/JTE20170277
  • Leo, C. J., & Xie, K. H. (2001). An efficient solution of one-dimensional consolidation of layered soft soils with time effects. Proceedings of 10th International Conference on Computer Methods and Advances in Geomechanics, Tucson, 1791–1794.
  • Li, C. X., & Xie, K. H. (2013). One-dimensional nonlinear consolidation of soft clay with the non-Darcian flow. Journal of Zhejiang University Science A, 14(6), 435–446. https://doi.org/10.1631/jzus.A1200343
  • Li, X. B., & Xie, K. H. (2005). Theory of 1D consolidation of soft clay soil with impeded boundaries under cyclic loading. Rock and Mechanics, 26(1), 155–159. https://doi.org/10.16285/j.rsm.2005.01.036(In Chinese).
  • Liu, J. C., Zhao, W. B., & Zai, J. M. (2007). Analysis of one-dimensional consolidation of double-layered viscoelastic ground. Rock and Mechanics, 28(4), 743–747. https://doi.org/10.16285/j.rsm.2007.04.021(In Chinese).
  • Liu, Z. Y., & Yang, Q. (2017). One-Dimensional rheological consolidation Analysis of Saturated Clay using fractional order Kelvin’s model. Rock and Soil Mechanics, 38(12), 3680–3687. https://doi.org/10.16285/j.rsm.2017.12.036(In Chinese).
  • Liu, Z. Y., Cui, P. L., Zhang, J. C., & Xia, Y. Y. (2019a). Consolidation analysis of ideal sand-drained ground with fractional-derivative merchant model and non-Darcian flow described by non-Newtonian index. Mathematical Problems in Engineering, 2019, 1–12. https://doi.org/10.1155/2019/5359076
  • Liu, Z. Y., Sun, L. Y., & Yue, J. C. (2009). One-dimensional consolidation theory of saturated clay based on non-Darcy flow. Chinese Journal of Rock Mechanics and Engineering, 28(5), 973–979. (In Chinese).
  • Liu, Z. Y., Xia, Y. Y., & Shi, M. S. (2020a). One-dimensional elastic visco-plastic consolidation analysis of structural clay considering gravity stress and Hansbo's flow. Chinese Journal of Geotechnical Engineering, 42(2), 221–229. https://doi.org/10.11779/CJGE202002002(In Chinese).
  • Liu, Z. Y., Xia, Y. Y., Zhang, J. C., & Zhu, X. M. (2020b). One-dimensional elastic visco-plastic consolidation analysis of saturated soft clay considering Hansbo's flow. Rock and Soil Mechanics, 41(1), 11–22. https://doi.org/10.16285/jrsm.2018.2277.
  • Liu, Z. Y., Yan, F. Y., & Wang, X. J. (2013). One-dimensional rheological consolidation analysis of saturated soft clay considering non-Darcy flow. Chinese Journal of Rock Mechanics and Engineering, 32(9), 1937–1944. (In Chinese).
  • Liu, Z. Y., Zhang, J. C., & Xia, Y. Y. (2019b). One-dimensional rheological consolidation analysis of saturated soft clay based on piecewise-linear model. Journal of Tongji University (Natural Science), 47(5), 640–647. https://doi.org/10.11908/j.issn.0253-374x2019.05.007. (In Chinese).
  • Liu, Z., Zhang, J., Duan, S., Xia, Y., & Cui, P. (2020c). A consolidation modelling algorithm based on the unified hardening constitutive relation and Hansbo's flow rule. Computers and Geotechnics, 117, 103233. https://doi.org/10.1016/j.compgeo.2019.103233
  • Ma, C. W., & Liu, Z. Y. (2007). One-dimensional nonlinear consolidation considering the buried depth of saturated clay layer. Chinese Journal of Rock Mechanics and Engineering, 26(Supp.2), 4372–4376. (In Chinese).
  • Miller, R. J., & Low, P. E. (1963). Threshold gradient for water flow in clay systems. Soil Science Society of America Journal, 27(6), 605–613. 03615995002700060013x. https://doi.org/10.2136/sssaj1963
  • Nash, D. F. T., Sills, G. C., & Davison, L. R. (1992). One-dimensional consolidation testing for soft clay from Bothkennar. Géotechnique, 42(2), 241–256. https://doi.org/10.1680/geot.1992.42.2.241
  • Pascal, F., Pascal, H., & Murray, D. W. (1981). Consolidation with threshold gradients. International Journal for Numerical and Analytical Methods in Geomechanics, 5(3), 247–261. https://doi.org/10.1002/nag.1610050303
  • Qiu, Y. L., & Ding, Z. X. (2012). Study of coupling theory of one-dimensional small-strain primary and secondary consolidation model. Rock and Soil Mechanics, 33(7), 1957–1964. https://doi.org/10.16285/j.rsm.2012.07.020. (In Chinese).
  • Taylor, D. W. (1948). Fundamentals of soil mechanics. John Wiley & Sons Inc.
  • Walker, L. K. (1969). Undrained creep in a sensitive clay. Géotechnique, 19(4), 515–529. https://doi.org/10.1680/geot.1969.19.4.515
  • Xie, K. H., Xie, X. Y., & Jiang, W. (2002). A study on one-dimensional nonlinear of consolidation of double-layered soil. Computers and Geotechnics, 29(2), 151–168. https://doi.org/10.1016/S0266-352X(01)00017-9tong
  • Xie, K.-H., Xia, C.-Q., An, R., Hu, A.-F., & Zhang, W.-P. (2016). A study on the one-dimensional consolidation of double-layered structured soils. Computers and Geotechnics, 73, 189–198. compgeo.2015.12.007.
  • Yao, Y. P. (2015). Advanced UH models for soils. Chinese Journal of Geotechnical Engineering, 37(2), 193–217. https://doi.org/10.11779/CJGE201502001.
  • Yao, Y., Kong, L., & Hu, J. (2013). An elastic viscous-plastic model for over consolidated clays. Science China Technological Sciences, 56(2), 441–457. https://doi.org/10.1007/s11431-012-5108-y
  • Yin, J. H. (1999). Non-linear creep of soils in oedometer tests. Géotechnique, 49(5), 699–707. https://doi.org/10.1680/geot.1999.49.5.699
  • Yin, J. H., & Graham, J. (1989). Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays. Canadian Geotechnical Journal, 26(2), 199–209. https://doi.org/10.1139/t89-029
  • Yin, J. H., & Graham, J. (1994). Equivalent times and one-dimensional elastic visco-plastic modelling of time-dependent stress-strain behaviour of clays. Canadian Geotechnical Journal, 31(1), 42–52. https://doi.org/10.1002/nag.2635
  • Zhou, Y., Bu, W.-k., & Lu, M.-m. (2013). One-dimensional consolidation with a threshold gradient: A Stefan problem with rate-dependent latent heat. International Journal for Numerical and Analytical Methods in Geomechanics, 37(16), 2825–2832. https://doi.org/10.1002/nag.2219

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.