387
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Physical and durability properties of recycled polyethylene terephthalate (PET) fibre reinforced concrete

&
Pages 7084-7102 | Received 15 Feb 2021, Accepted 31 Aug 2021, Published online: 15 Sep 2021

References

  • A. of P.M. Europ. (2020). Plastics - the facts 2020: An analysis of European plastics production, demand and waste data. PlasticsEurope. Retreived February 3, 2021, from https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020
  • Alani, A. H., Bunnori, N. M., Noaman, A. T., & Majid, T. A. (2019). Durability performance of a novel ultra-high-performance PET green concrete (UHPPGC). Construction and Building Materials, 209, 395–405. https://doi.org/10.1016/j.conbuildmat.2019.03.088
  • Alani, A. H., Bunnori, N. M., Noaman, A. T., & Majid, T. A. (2020). Mechanical characteristics of PET fibre-reinforced green ultra-high performance composite concrete. European Journal of Environmental and Civil Engineering, 1–22. https://doi.org/10.1080/19648189.2020.1772117
  • Albano, C., Camacho, N., Hernández, M., Matheus, A., & Gutiérrez, A. (2009). Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Management (New York, N.Y.), 29(10), 2707–2716. https://doi.org/10.1016/j.wasman.2009.05.007
  • Al-Hadithi, A. I., Noaman, A. T., & Mosleh, W. K. (2019). Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Composite Structures, 224, 111021. https://doi.org/10.1016/j.compstruct.2019.111021
  • Ali, T. K. M., Hilal, N., Faraj, R. H., & Al-Hadithi, A. I. (2020). Properties of eco-friendly pervious concrete containing polystyrene aggregates reinforced with waste PET fibers. Innovative Infrastructure Solutions, 5(3), 1–16. https://doi.org/10.1007/s41062-020-00323-w
  • American Society for Testing and Materials (ASTM). (2008). C1202-08: Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM Int.
  • American Society for Testing and Materials (ASTM). (2013). C642-13: Standard test method for density, absorption, and voids in hardened concrete. ASTM Int.
  • American Society for Testing and Materials (ASTM). (2016a). C192/C192M-16a Standard practice for making and curing concrete test specimens in the laboratory. ASTM Int.
  • American Society for Testing and Materials (ASTM). (2016b). C597-16: Standard test method for pulse velocity through concrete. ASTM Int.
  • Arioz, O. (2007). Effects of elevated temperatures on properties of concrete. Fire Safety Journal, 42(8), 516–522. https://doi.org/10.1016/j.firesaf.2007.01.003
  • Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials., 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330
  • Awoyera, P. O., Olalusi, O. B., & Ekpe, C. O. (2021). Plastic fiber-strengthened interlocking bricks for load bearing applications. Innovative Infrastructure Solutions, 6(2), 1–10. https://doi.org/10.1007/s41062-021-00495-z
  • Awoyera, P. O., Olalusi, O. B., & Iweriebo, N. (2021). Physical, strength, and microscale properties of plastic fiber-reinforced concrete containing fine ceramics particles. Materialia, 15, 100970. https://doi.org/10.1016/j.mtla.2020.100970
  • Bhogayata, A. C., & Arora, N. K. (2018). Impact strength, permeability and chemical resistance of concrete reinforced with metalized plastic waste fibers. Construction and Building Materials, 161, 254–266. https://doi.org/10.1016/j.conbuildmat.2017.11.135
  • Borg, R. P., Baldacchino, O., & Ferrara, L. (2016). Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials., 108, 29–47. https://doi.org/10.1016/j.conbuildmat.2016.01.029
  • Bostanci, S. C. (2020). Use of waste marble dust and recycled glass for sustainable concrete production. Journal of Cleaner Production, 251, 119785. https://doi.org/10.1016/j.jclepro.2019.119785
  • Boucedra, A., Bederina, M., & Ghernouti, Y. (2020). Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates. Construction and Building Materials., 256, 119447. https://doi.org/10.1016/j.conbuildmat.2020.119447
  • Bui, N. K., Satomi, T., & Takahashi, H. (2018). Recycling woven plastic sack waste and PET bottle waste as fiber in recycled aggregate concrete: An experimental study. Waste Management (New York, N.Y.), 78, 79–93. https://doi.org/10.1016/j.wasman.2018.05.035
  • Deutsches Institut für Normung (DIN) Building and Civil Engineering Standards Committee, 1048 - Part 5: Testing Concrete, Dtsch. Norm. (1991).
  • Fernández, M. E., Payá, J., Borrachero, M. V., Soriano, L., Mellado, A., & Monzó, J. (2017). Degradation process of postconsumer waste bottle fibers used in Portland cement–based composites. Journal of Materials in Civil Engineering, 29(10), 04017183. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002007
  • Foti, D. (2011). Preliminary analysis of concrete reinforced with waste bottles PET fibers. Construction and Building Materials, 25(4), 1906–1915. https://doi.org/10.1016/j.conbuildmat.2010.11.066
  • Foti, D. (2019). Recycled waste PET for sustainable fiber-reinforced concrete. In F. P. Torgal, J. Khatib, F. Colangelo, & R. Tuladhar (Eds.), Use recycled plastics in eco-efficient concrete. Woodhead Publishing series in civil and structural engineering (pp. 387–410). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-102676-2.00018-9
  • Francioso, V., Moro, C., Castillo, A., & Velay-Lizancos, M. (2021). Effect of elevated temperature on flexural behavior and fibers-matrix bonding of recycled PP fiber-reinforced cementitious composite. Construction and Building Materials, 269, 121243. https://doi.org/10.1016/j.conbuildmat.2020.121243
  • Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., & Incarnato, L. (2011). Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite Structures, 93(9), 2368–2374. https://doi.org/10.1016/j.compstruct.2011.03.025
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Gholampour, A., & Ozbakkaloglu, T. (2019). Recycled plastic. In J. de Brito & F. Agrela (Eds.), New trends eco-efficient and recycled concrete. Woodhead Publishing series in civil and structural engineering (pp. 59–85). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102480-5.00003-8
  • Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005
  • Gündüz, L. (2005). İnşaat Sektöründe Bimsblok, Isparta.
  • Hager, I. (2013). Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(1), 145–154. https://doi.org/10.2478/bpasts-2013-0013
  • Kakooei, S., Akil, H. M., Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials, 27(1), 73–77. https://doi.org/10.1016/j.conbuildmat.2011.08.015
  • Khalid, F. S., Irwan, J. M., Ibrahim, M. H. W., Othman, N., & Shahidan, S. (2018). Performance of plastic wastes in fiber-reinforced concrete beams. Construction and Building Materials, 183, 451–464. https://doi.org/10.1016/j.conbuildmat.2018.06.122
  • Kim, S. B., Yi, N. H., Kim, H. Y., Kim, J. H. J., & Song, Y. C. (2010). Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32(3), 232–240. https://doi.org/10.1016/j.cemconcomp.2009.11.002
  • Li, Y., Zhang, Y., Yang, E. H., & Tan, K. H. (2019). Effects of geometry and fraction of polypropylene fibers on permeability of ultra-high performance concrete after heat exposure. Cement and Concrete Research, 116, 168–178. https://doi.org/10.1016/j.cemconres.2018.11.009
  • Ma, Q., Guo, R., Zhao, Z., Lin, Z., & He, K. (2015). Mechanical properties of concrete at high temperature-A review. Construction and Building Materials, 93, 371–383. https://doi.org/10.1016/j.conbuildmat.2015.05.131
  • Machovic, V., Kopecký, L., Němeček, J., Kolář, F., Svítilová, J., Bittnar, Z., & Andertová, J. (2008). Raman micro-spectroscopy mapping and microstructural and micromechanical study of interfacial transition zone in concrete reinforced by poly(ethylene terephthalate) fibres. Ceramics Silikaty, 52, 54–60.
  • Marthong, C., & Sarma, D. K. (2016). Influence of PET fiber geometry on the mechanical properties of concrete: An experimental investigation. European Journal of Environmental and Civil Engineering, 20(7), 771–784. https://doi.org/10.1080/19648189.2015.1072112
  • Mohammed, A. A., & Rahim, A. A. F. (2020). Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber. Construction and Building Materials, 244, 118350. https://doi.org/10.1016/j.conbuildmat.2020.118350
  • Neville, A. M., & Brooks, J. J. (1987). Concrete technology. Pearson Education Limited.
  • Ochi, T., Okubo, S., & Fukui, K. (2007). Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cement and Concrete Composites, 29(6), 448–455. https://doi.org/10.1016/j.cemconcomp.2007.02.002
  • Park, S. H., Lee, P. J., & Lee, B. K. (2017). Levels and sources of neighbour noise in heavyweight residential buildings in Korea. Applied Acoustics, 120, 148–157. https://doi.org/10.1016/j.apacoust.2017.01.012
  • Pelisser, F., Montedo, O. R. K., Gleize, P. J. P., & Roman, H. R. (2012). Mechanical properties of recycled PET fibers in concrete. Materials Research, 15(4), 679–686. https://doi.org/10.1590/S1516-14392012005000088
  • Pereira de Oliveira, L. A., & Castro-Gomes, J. P. (2011). Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712–1717. https://doi.org/10.1016/j.conbuildmat.2010.11.044
  • Saad, M., Abo-El-Enein, S. A., Hanna, G. B., & Kotkata, M. F. (1996). Effect of temperature on physical and mechanical properties of concrete containing silica fume. Cement and Concrete Research, 26(5), 669–675. https://doi.org/10.1016/S0008-8846(96)85002-2
  • Sadiqul Islam, G. M., & Gupta, S. D. (2016). Evaluating plastic shrinkage and permeability of polypropylene fiber reinforced concrete. International Journal of Sustainable Built Environment, 5(2), 345–354. https://doi.org/10.1016/j.ijsbe.2016.05.007
  • Saxena, R., Gupta, T., Sharma, R. K., Chaudhary, S., & Jain, A. (2020). Assessment of mechanical and durability properties of concrete containing PET waste. Scientia Iranica, 27(1), 1–9. https://doi.org/10.24200/sci.2018.20334
  • Schneider, U., Felicetti, R., Debicki, G., Diederichs, U., Franssen, J. M., Jumppanen, U. M., Khoury, G. A., Leonovich, S., Millard, A., Morris, W. A., Phan, L. T., Pimienta, P., Rodrigues, J. P. C., Schlangen, E., Schwesinger, P., & Zaytsev, Y. (2007). Recommendation of RILEM TC 200-HTC: Mechanical concrete properties at high temperatures—modelling and applications. Materials and Structures., 40, 841–853. https://doi.org/10.1617/s11527-007-9285-2
  • Sharma, R., & Bansal, P. P. (2016). Use of different forms of waste plastic in concrete - A review. Journal of Cleaner Production, 112, 473–482. https://doi.org/10.1016/j.jclepro.2015.08.042
  • Siddique, R., Khatib, J., & Kaur, I. (2008). Use of recycled plastic in concrete: A review. Waste Management (New York, N.Y.), 28(10), 1835–1852. https://doi.org/10.1016/j.wasman.2007.09.011
  • Teychenné, D. C., Franklin, R. E., & Erntroy, H. C. (1997). Design of normal concrete mixes (2nd ed.). IHS BRE Press.
  • Tie, T. S., Mo, K. H., Putra, A., Loo, S. C., Alengaram, U. J., & Ling, T. C. (2020). Sound absorption performance of modified concrete: A review. Journal of Building Engineering, 30, 101219. https://doi.org/10.1016/j.jobe.2020.101219
  • Toutanji, H., McNeil, S., & Bayasi, Z. (1998). Chloride permeability and impact resistance of polypropylene-fiber-reinforced silica fume concrete. Cement and Concrete Research, 28(7), 961–968. https://doi.org/10.1016/S0008-8846(98)00073-8
  • Wang, J. Y., Chia, K. S., Liew, J. Y. R., & Zhang, M. H. (2013). Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cement and Concrete Composites, 43, 39–47. https://doi.org/10.1016/j.cemconcomp.2013.06.006
  • Won, J.-P. P., Il Jang, C.-I., Lee, S.-W. W. S.-J. J., Lee, S.-W. W. S.-J. J., & Kim, H.-Y. Y. (2010). Long-term performance of recycled PET fibre-reinforced cement composites. Construction and Building Materials 24(5), 660–665. https://doi.org/10.1016/j.conbuildmat.2009.11.003
  • Zhang, S., He, P., & Niu, L. (2020). Mechanical properties and permeability of fiber-reinforced concrete with recycled aggregate made from waste clay brick. Journal of Cleaner Production, 268, 121690. https://doi.org/10.1016/j.jclepro.2020.121690
  • Zhang, Y., Li, H., Abdelhady, A., & Yang, J. (2020). Effect of different factors on sound absorption property of porous concrete. Transportation Research Part D: Transport and Environment, 87, 102532. https://doi.org/10.1016/j.trd.2020.102532

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.