353
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Performance assessment of travertine waste as alternative concrete aggregate

&
Pages 7155-7176 | Received 07 Apr 2021, Accepted 13 Sep 2021, Published online: 01 Oct 2021

References

  • ACI 318. (2019). 318-19 Building code requirements for structural concrete and commentary. https://doi.org/10.14359/51716937
  • Arioglu, N., Canan Girgin, Z., & Arioglu, E. (2006). Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion. ACI Materials Journal, 103(1), 18–24. https://doi.org/10.14359/15123
  • ASTM C1585-13. (2013). Standard test method for measurement of rate of absorption of water by hydraulic cement concretes. ASTM International, 41(147), 1–6. https://doi.org/10.1520/C1585-20.
  • Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete – a breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
  • Biró, A., Hlavička, V., & Lublóy, É. (2019). Effect of fire-related temperatures on natural stones. Construction and Building Materials, 212, 92–101. https://doi.org/10.1016/j.conbuildmat.2019.03.333
  • Cobanoglu, I., Celik, S. B., Cam, O., Etiz, H., & Kursun, M. (2014). Investigation of the usability of travertine quarry wastes as concrete aggregate. Pamukkale University Journal of Engineering Sciences, 20(3), 92–99. https://doi.org/10.5505/pajes.2014.52824
  • Cobanoğlu, İ., & Celik, S. B. (2017). Assessments on the usability of Wide Wheel (Capon) test as reference abrasion test method for building stones. Construction and Building Materials, 151, 319–330. https://doi.org/10.1016/j.conbuildmat.2017.06.045
  • Corinaldesi, V. (2010). Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Construction and Building Materials, 24(9), 1616–1620. https://doi.org/10.1016/j.conbuildmat.2010.02.031
  • Dash, M. K., & Patro, S. K. (2021). Performance assessment of ferrochrome slag as partial replacement of fine aggregate in concrete. European Journal of Environmental and Civil Engineering, 25(4), 635–654. https://doi.org/10.1080/19648189.2018.1539674
  • Demirdag, S. (2013). Effects of freezing-thawing and thermal shock cycles on physical and mechanical properties of filled and unfilled travertines. Construction and Building Materials, 47, 1395–1401. https://doi.org/10.1016/j.conbuildmat.2013.06.045
  • Dovì, V. G., Friedler, F., Huisingh, D., & Klemeš, J. J. (2009). Cleaner energy for sustainable future. Journal of Cleaner Production, 17(10), 889–895. https://doi.org/10.1016/j.jclepro.2009.02.001
  • DS 423.40. (2002). Testing of concrete – hardened concrete – producing fluorescence impregnated thin sections, Danish Standard.
  • EN 1097-2. (2020). Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation.
  • EN 1097-6. (2013). Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorption.
  • EN 1367-2. (2013). Tests for thermal and weathering properties of aggregates. Magnesium sulfate test.
  • EN 12350-2. (2009). Testing fresh concrete — Part 2: Slump test.
  • EN 12390-3. (2019). Testing hardened concrete compressive strength of test specimens.
  • EN 12390-6. (2009). Testing hardened concrete – Part 6: Tensile splitting strength of test specimens.
  • EN 12390-13. (2013). Testing hardened concrete – Part 13: Determination of secant modulus of elasticity in compression.
  • EN 12620-13. (2013). Aggregates for concrete.
  • EN 933-3. (2012). Tests for geometrical properties of aggregates. Determination of particle shape. Flakiness index.
  • EN 933-4. (2008). Tests for geometrical properties of aggregates. Determination of particle shape. Shape index.
  • EN 933-8. (2015). Tests for geometrical properties of aggregates – assessment of fines – sand equivalent test.
  • EN 933-9. (2013). Tests for geometrical properties of aggregates. Assessment of fines. Methylene blue test.
  • EN 206. (2013). Concrete. Specification, performance, production and conformity.
  • EN 1338. (2003). Concrete paving blocks. Requirements and test methods.
  • Ergezer, F. (2018). Sıcak cermik bölgesi (Sivas) traverten atıklarının yol temel ve alt temel tabakalarında kullanılabilirliğinin araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(Özel), 181. https://doi.org/10.19113/sdufbed.68095
  • Eurocode2. (2004). Design of concrete structures: Part 1–1: General rules and rules for buildings.
  • Ghorbani, S., Sharifi, S., Ghorbani, S., Tam, V. W., de Brito, J., & Kurda, R. (2019). Effect of crushed concrete waste’s maximum size as partial replacement of natural coarse aggregate on the mechanical and durability properties of concrete. Resources, Conservation and Recycling, 149, 664–673. https://doi.org/10.1016/j.resconrec.2019.06.030
  • U.S. Geological Survey, 2021, Mineral commodity summaries 2021: U.S. Geological Survey, 200 p., https://doi.org/10.3133/mcs2021.
  • Gunasekara, C., Seneviratne, C., Law, D. W., & Setunge, S. (2020). Feasibility of developing sustainable concrete using environmentally friendly coarse aggregate. Applied Sciences, 10(15), 5207. https://doi.org/10.3390/app10155207
  • Hama, S. M. (2020). Behavior of concrete incorporating waste plastic as fine aggregate subjected to compression, impact load and bond resistance. European Journal of Environmental and Civil Engineering, 1–15. https://doi.org/10.1080/19648189.2020.1798287
  • Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., & Ren, J. (2018). Construction and demolition waste management in China through the 3R principle. Resources, Conservation and Recycling, 129, 36–44. https://doi.org/10.1016/j.resconrec.2017.09.029
  • Karaca, Z., Pekin, A., & Deliormanlı, A. H. (2012). Classification of dimension stone wastes. Environmental Science and Pollution Research International, 19(6), 2354–2362. https://doi.org/10.1007/s11356-012-0745-z
  • Kazmi, S. M. S., Munir, M. J., & Wu, Y. F. (2021). Application of waste tire rubber and recycled aggregates in concrete products: A new compression casting approach. Resources, Conservation and Recycling, 167, 105353. https://doi.org/10.1016/j.resconrec.2020.105353
  • Kiliç, A., Atiş, C. D., Teymen, A., Karahan, O., Özcan, F., Bilim, C., & Özdemir, M. (2008). The influence of aggregate type on the strength and abrasion resistance of high strength concrete. Cement and Concrete Composites, 30(4), 290–296. https://doi.org/10.1016/j.cemconcomp.2007.05.011
  • Kozul, R., & Darwin, D. (1997). Effects of aggregate type. Size, and content on concrete strength and fracture energy. University of Kansas Center for Research.
  • Li, P. P., Yu, Q. L., & Brouwers, H. J. H. (2018). Effect of coarse basalt aggregates on the properties of Ultra-high Performance Concrete (UHPC). Construction and Building Materials, 170, 649–659. https://doi.org/10.1016/j.conbuildmat.2018.03.109
  • Lin, Y., & Ichinose, T. (2014). Experimental evaluation of mitigation of thermal effects by “katsuren travertine” paving material. Energy and Buildings, 81, 253–261. https://doi.org/10.1016/j.enbuild.2014.06.025
  • Luo, T., Zhang, C., Sun, C., Zheng, X., Ji, Y., & Yuan, X. (2020). Experimental investigation on the freeze-thaw resistance of steel fibers reinforced rubber concrete. Materials, 13(5). https://doi.org/10.3390/ma13051260
  • Miličević, I., Štirmer, N., & Bjegović, D. (2017). Relation between the compressive strength and modulus of elasticity of concrete with crushed brick and roof tile aggregates. Structural Concrete, 18(2), 366–375. https://doi.org/10.1002/suco.201500207
  • Mitchell, C. J., Harrison, D. J., Robinson, H. L., & Ghazireh, N. (2004). Minerals from waste: Recent BGS and Tarmac experience in finding uses for mine and quarry waste. Minerals Engineering , 17(2), 279–284. https://doi.org/10.1016/j.mineng.2003.07.020
  • Noguchi, T., Tomosawa, F., Nemati, K. M., Chiaia, B. M., & Fantilli, A. R. (2009). A practical equation for elastic modulus of concrete. ACI Structural Journal, 106(5), 690–696. https://doi.org/10.14359/51663109
  • Özkaya, K., Ayrilmis, N., & Özdemir, S. (2015). Potential use of waste marble powder as adhesive filler in the manufacture of laminated veneer lumber. BioResources, 10(1), 1686–1695. https://doi.org/10.15376/biores.10.1.1686-1695
  • Piekarczyk, A., & Łaźniewska-Piekarczyk, B. (2021). Impact of self-compacting concrete admixtures on frost resistance and compressive strength—commensurability of frost resistance criteria. Materials, 14(11). https://doi.org/10.3390/ma14112922
  • Rahimi, H., Tang, X., Rahimi, S., & Singh, P. K. (2018). Using travertine in pervious pavement to control urban-flooding and storm water quality. International Journal of Applied Science, 1(1), p20. https://doi.org/10.30560/ijas.v1n1p20
  • Rana, A., Kalla, P., Verma, H. K., & Mohnot, J. K. (2016). Recycling of dimensional stone waste in concrete: A review. Journal of Cleaner Production, 135, 312–331. https://doi.org/10.1016/j.jclepro.2016.06.126
  • Rashid, K., Hameed, R., Ahmad, H. A., Razzaq, A., Ahmad, M., & Mahmood, A. (2018). Analytical framework for value added utilization of glass waste in concrete: Mechanical and environmental performance. Waste Management, 79, 312–323. https://doi.org/10.1016/j.wasman.2018.07.052
  • Roychand, R., Kumar Pramanik, B., Zhang, G., & Setunge, S. (2020). Recycling steel slag from municipal wastewater treatment plants into concrete applications – A step towards circular economy. Resources, Conservation and Recycling, 152, 104533. https://doi.org/10.1016/j.resconrec.2019.104533
  • Sarami, N., & Mahdavian, L. (2015). Effect of inorganic compound on artificial stones’ properties. International Journal of Industrial Chemistry, 6(3), 213–219. https://doi.org/10.1007/s40090-015-0045-9
  • Sarami, N., & Mahdavian, L. (2016). Comparison of artificial stone made from sludge stone with travertine stone waste of stone cutting factory. International Journal of Engineering Research in Africa, 23, 64–71. https://doi.org/10.4028/www.scientific.net/JERA.23.64
  • Seara-Paz, S., Corinaldesi, V., González-Fonteboa, B., & Martínez-Abella, F. (2016). Influence of recycled coarse aggregates characteristics on mechanical properties of structural concrete. European Journal of Environmental and Civil Engineering, 20(sup1), s123–s139. https://doi.org/10.1080/19648189.2016.1246694
  • Shishegaran, A., Saeedi, M., Mirvalad, S., & Korayem, A. H. (2021). The mechanical strength of the artificial stones, containing the travertine wastes and sand. Journal of Materials Research and Technology, 11, 1688–1709. https://doi.org/10.1016/j.jmrt.2021.02.013
  • Smadi, M., & Migdady, E. (1991). Properties of high strength tuff lightweight aggregate concrete. Cement and Concrete Composites, 13(2), 129–135. https://doi.org/10.1016/0958-9465(91)90008-6
  • Sogancioglu, M., Yel, E., Aksoy, S., & Unal, V. E. (2016). Enhancement of concrete properties by waste physicochemical treatment sludge of travertine processing wastewater. Journal of Cleaner Production, 112, 575–580. https://doi.org/10.1016/j.jclepro.2015.08.040
  • Talavari, R., Hosseini, S., & Moradi, G. R. (2021). Low-cost biodiesel production using waste oil and catalyst. Waste Management & Research: The Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 39(2), 250–259. https://doi.org/10.1177/0734242X20935174
  • Teixeira, E. R., Camões, A., Branco, F. G., Aguiar, J. B., & Fangueiro, R. (2019). Recycling of biomass and coal fly ash as cement replacement material and its effect on hydration and carbonation of concrete. Waste Management, 94, 39–48. https://doi.org/10.1016/j.wasman.2019.05.044
  • Tekin, I. (2016). Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127, 607–617. https://doi.org/10.1016/j.conbuildmat.2016.10.038
  • TS 15317. (2012). Standard test method for determining the potential alkali silica reactivity of combinations of cementitious materials and aggregate (accelerated mortar bar method), Turkish standard.
  • Tugrul Tunc, E., & Alyamac, K. E. (2020). Determination of the relationship between the Los Angeles abrasion values of aggregates and concrete strength using the Response Surface Methodology. Construction and Building Materials, 260, 119850. https://doi.org/10.1016/j.conbuildmat.2020.119850
  • Tugrul Tunc, E., & Esat Alyamac, K. (2019). A preliminary estimation method of Los Angeles abrasion value of concrete aggregates. Construction and Building Materials, 222, 437–446. https://doi.org/10.1016/j.conbuildmat.2019.06.176
  • Urosevic, M., Sebastián-Pardo, E., & Cardell, C. (2010). Rough and polished travertine building stone decay evaluated by a marine aerosol ageing test. Construction and Building Materials, 24(8), 1438–1448. https://doi.org/10.1016/j.conbuildmat.2010.01.011
  • Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., & Chaipanich, A. (2014). Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume. Materials & Design, 64, 261–269. https://doi.org/10.1016/j.matdes.2014.07.042
  • Zhang, S. P., & Zong, L. (2014). Evaluation of relationship between water absorption and durability of concrete materials. Advances in Materials Science and Engineering, 2014, 1–8. https://doi.org/10.1155/2014/650373

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.