122
Views
0
CrossRef citations to date
0
Altmetric
Note

A 1D thermomechanical model for saturated clay and its optimisation-based parameter identification

, , &
Pages 7192-7208 | Received 23 Apr 2020, Accepted 16 Sep 2021, Published online: 28 Sep 2021

References

  • Abuel-Naga, H., Bergado, D., Bouazza, A., & Pender, M. (2009). Thermomechanical model for saturated clays. Géotechnique, 59(3), 273–278. https://doi.org/10.1680/geot.2009.59.3.273
  • Abuel-Naga, H., Bergado, D., Bouazza, A., & Ramana, G. (2007). Volume change behaviour of saturated clays under drained heating conditions, experimental results and constitutive modeling. Canadian Geotechnical Journal, 44(8), 942–956. https://doi.org/10.1139/t07-031
  • Adam, D., & Markiewicz, R. (2009). Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique, 59(3), 229–236. https://doi.org/10.1680/geot.2009.59.3.229
  • Bäck, T. (1996). Evolutionary algorithms in theory and practice, evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press.
  • Baldi, G., Hueckel, T., & Pellegrini, R. (1988). Thermal volume changes of the mineral–water system in low-porosity clay soils. Canadian Geotechnical Journal, 25(4), 807–825. https://doi.org/10.1139/t88-089
  • Baldi, G., Hueckel, T., Peano, A., & Pellegrini, R. (1991). Developments in modelling of thermohydro-geomechanical behaviour of Boom clay and clay-based buffer materials (Vol. 1). EUR 13365/1; Commission of the European Communities.
  • Bourne-Webb, P., Burlon, S., Javed, S., Kürten, S., & Loveridge, F. (2016). Analysis and design methods for energy geostructures. Renewable & Sustainable Energy Reviews, 65, 402–419. https://doi.org/10.1016/j.rser.2016.06.046
  • Brandl, H. (2006). Energy foundations and other thermo active ground structures. Géotechnique, 56(2), 81–122. https://doi.org/10.1680/geot.2006.56.2.81
  • Campanella, R. G., & Mitchell, J. K. (1968). Influence of temperature variations on soil behavior. Journal of the Soil Mechanics & Foundations Division, 94(3), 709–734. https://doi.org/10.1061/JSFEAQ.0001136
  • Cui, Y. J., Sultan, N., & Delage, P. (2000). A thermomechanical model for saturated clays. Canadian Geotechnical Journal, 37(3), 607–620. https://doi.org/10.1139/t99-111
  • Demars, K., & Charles, R. (1982). Soil volume changes induced by temperature cycling. Canadian Geotechnical Journal, 19(2), 188– 194. https://doi.org/10.1139/t82-021
  • Elbaz, K., Shen, S. L., Zhou, A. N., Yin, Z. Y., & Lyu, H. M. (2021). Prediction of disc cutter life during shield tunneling with ai via the incorporation of a genetic algorithm into a GMDH-type neural network. Engineering, 7(2), 238–251. https://doi.org/10.1016/j.eng.2020.02.016
  • Gao, Q. F., Zeng, L., Shi, Z. N., & Zhang, R. (2021). Evolution of unsaturated shear strength and microstructure of a compacted silty clay on wetting paths. International Journal of Geomechanics. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002207
  • Gao, M., Zhang, N., Shen, S. L., & Zhou, A. N. (2020). Real-time dynamic earth-pressure regulation model for shield tunneling by integrating GRU deep learning method with GAoptimization. IEEE Access, 8, 64310–64323. https://doi.org/10.1109/ACCESS.2020.2984515
  • Ghembaza, M. S., Taïbi, S., & Fleureau, J. M. (2014). Thermo-hydro-mechanical behaviour of a sandy clay on isotropic paths. European Journal of Environmental & Civil Engineering, 18(2), 206–222. https://doi.org/10.1080/19648189.2013.856034
  • Goldberg, D. E. (1991). Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Systems, 5, 139–168.
  • Graham, J., Tanaka, N., Crilly, T., & Alfaro, M. (2001). Modified Cam-Clay modelling of temperature effects in clays. Canadian Geotechnical Journal, 38(3), 608–621. https://doi.org/10.1139/t00-125
  • Hamidi, A., Tourchi, S., & Khazaei, C. (2015). Thermomechanical constitutive model for saturated clays based on critical state theory. International Journal of Geomechanics, 15(1), 04014038. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000402
  • Hill, M. C. (1998). Methods and guidelines for effective model calibration. US Geological Survey Denver.
  • Hong, P., Pereira, J., Tang, A., & Cui, Y. J. (2013). On some advanced thermo‐mechanical models for saturated clays. International Journal for Numerical & Analytical Methods in Geomechanics, 37(17), 2952–2971. https://doi.org/10.1002/nag.2170
  • Hong, P. Y., Pereira, J. M., Cui, Y. J., & Tang, A. M. (2016). A two‐surface thermomechanical model for saturated clays. International Journal for Numerical & Analytical Methods in Geomechanics, 40(7), 1059–1080. https://doi.org/10.1002/nag.2474
  • Hueckel, T., & Borsetto, M. (1990). Thermoplasticity of saturated soils and shales, constitutive equations. Journal of Geotechnical Engineering, 116(12), 1765–1777. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1765)
  • Hueckel, T., François, B., & Laloui, L. (2009). Explaining thermal failure in saturated clays. Géotechnique, 59(3), 197–212. https://doi.org/10.1680/geot.2009.59.3.197
  • Jin, Y. F., Yin, Z. Y., Riou, Y., & Hicher, P. Y. (2017). Identifying creep and destructuration related soil parameters by optimization methods. KSCE Journal of Civil Engineering, 21(4), 1123–1134. https://doi.org/10.1007/s12205-016-0378-8
  • Jin, Y. F., Yin, Z. Y., Shen, S. L., & Hicher, P. Y. (2016a). Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis. Acta Geotechnica, 11(5), 1131–1145. https://doi.org/10.1007/s11440-015-0425-5
  • Jin, Y. F., Yin, Z. Y., Shen, S. L., & Hicher, P. Y. (2016b). Selection of sand models and identification of parameters using an enhanced genetic algorithm. International Journal for Numerical & Analytical Methods in Geomechanics, 40(8), 1219–1240. https://doi.org/10.1002/nag.2487
  • Jin, Y. F., Yin, Z. Y., Wu, Z. X., & Zhou, W. H. (2018). Identifying parameters of easily crushable sand and application to offshore pile driving. Ocean Engineering, 154, 416–429. https://doi.org/10.1016/j.oceaneng.2018.01.023
  • Jin, Y. F., Yin, Z. Y., Zhou, W. H., & Horpibulsuk, S. (2019). Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method. Acta Geotechnica, 14(6), 1925–1947. https://doi.org/10.1007/s11440-019-00847-1
  • Jin, Y. F., Yin, Z. Y., Zhou, W. H., & Huang, H. W. (2019). Multi-objective optimization-based updating of predictions during excavation. Engineering Applications of Artificial Intelligence, 78, 102–123. https://doi.org/10.1016/j.engappai.2018.11.002
  • Jin, Y. F., Yin, Z. Y., Zhou, W. H., & Shao, J. F. (2019). Bayesian model selection for sand with generalization ability evaluation. International Journal for Numerical & Analytical Methods in Geomechanics, 43(14), 2305–2327. https://doi.org/10.1002/nag.2979
  • Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization, artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471. https://doi.org/10.1007/s10898-007-9149-x
  • Kennedy, J. (2010). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760–766). Springer.
  • Laloui, L., & Cekerevac, C. (2003). Thermo-plasticity of clays: an isotropic yield mechanism. Computers & Geotechnics, 30(8), 649–660. https://doi.org/10.1016/j.compgeo.2003.09.001
  • Laloui, L., & François, B. (2009). ACMEG-T, soil thermoplasticity model. Journal of Engineering Mechanics, 135(9), 932–944. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000011
  • Lecampion, B., Constantinescu, A., & Nguyen Minh, D. (2002). Parameter identification for lined tunnels in a viscoplastic medium. International Journal for Numerical & Analytical Methods in Geomechanics, 26(12), 1191–1211. https://doi.org/10.1002/nag.241
  • Levasseur, S., Malécot, Y., Boulon, M., & Flavigny, E. (2008). Soil parameter identification using a genetic algorithm. International Journal for Numerical & Analytical Methods in Geomechanics, 32(2), 189–213. https://doi.org/10.1002/nag.614
  • Lin, S. S., Shen, S. L., Zhang, N., & Zhou, A. N. (2021a). Method for lake eutrophication levels evaluation: TOPSIS-MCS. MethodsX, 8, 101311. https://doi.org/10.1016/j.mex.2021.101311
  • Lin, S. S., Shen, S. L., Zhang, N., & Zhou, A. N. (2021b). Comprehensive environmental impact evaluation for concrete mixing station (CMS) based on improved TOPSIS method. Sustainable Cities & Society, 69, 102838. https://doi.org/10.1016/j.scs.2021.102838
  • Lin, S. S., Shen, S. L., Zhou, A. N., & Lyu, H. M. (2021). Assessment and management of lake eutrophication: A case study in Lake Erhai, China. Science of the Total Environment, 751, 141618. https://doi.org/10.1016/j.scitotenv.2020.141618
  • Lin, S. S., Shen, S. L., Zhou, A. N., & Xu, Y. S. (2020). Approach based on TOPSIS and Monte Carlo simulation methods to evaluate lake eutrophication levels. Water Research, 187, 116437.
  • Lyu, H. M., Shen, S. L., & Zhou, A. N. (2021). The development of IFN-SPA: A new risk assessment method of urban water quality and its application in Shanghai. Journal of Cleaner Production, 282, 124542. https://doi.org/10.1016/j.jclepro.2020.124542
  • Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008
  • Moritz, L. (1995). Geotechnical properties of clay at elevated temperatures. Swedish Geotechnical Institute Linköping.
  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
  • Price, K., & Storn, R. (1997). Differential evolution, a simple evolution strategy for fast optimization. Dr. Dobb’s Journal, 22, 18–24.
  • Shen, S. L., Lyu, H. M., Zhou, A. N., Lu, L. H., Li, G., & Hu, B. B. (2021). Automatic control of groundwater balance to combat dewatering during construction of a metro system. Automation in Construction, 123, 103536. https://doi.org/10.1016/j.autcon.2020.103536
  • Storn, R., & Price, K. (1997). Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328
  • Sultan, N., Delage, P., & Cui, Y. (2002). Temperature effects on the volume change behaviour of Boom clay. Engineering Geology, 64(2–3), 135–145. https://doi.org/10.1016/S0013-7952(01)00143-0
  • Wang, L., Wang, K., & Hong, Y. (2016). Modeling temperature-dependent behavior of soft clay. Journal of Engineering Mechanics, 142(8), 04016054. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001108
  • Yao, Y. P., & Zhou, A. N. (2013). Non-isothermal unified hardening model, a thermo-elasto-plastic model for clays. Géotechnique, 63(15), 1328–1345. https://doi.org/10.1680/geot.13.P.035
  • Yin, Z. Y., & Hicher, P. Y. (2008). Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical & Analytical Methods in Geomechanics, 32(12), 1515–1535. https://doi.org/10.1002/nag.684
  • Yin, Z. Y., Jin, Y. F., Shen, J. S., & Hicher, P. Y. (2018). Optimization techniques for identifying soil parameters in geotechnical engineering, comparative study and enhancement. International Journal for Numerical & Analytical Methods in Geomechanics, 42(1), 70–94. https://doi.org/10.1002/nag.2714
  • Zhu, Q. Y., Zhao, T. Y., & Zhuang, P. Z. (2021). Thermal strain response of saturated clays in 1D condition. Journal of Zhejiang University-SCIENCE A, 22(3), 182–187. https://doi.org/10.1631/jzus.A2000152
  • Zhu, Q. Y., Zhuang, P. Z., Yin, Z. Y., & Yu, H. S. (2021). A state parameter-based thermomechanical constitutive model for fine-grained saturated soils. Canadian Geotechnical Journal, 58(7), 1045–1058. https://doi.org/10.1139/cgj-2019-0322

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.