132
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of a migration test from the perspective of characterizing stable radionuclides diffusion, through cementitious materials

ORCID Icon, , , &
Pages 7267-7281 | Received 19 Sep 2020, Accepted 20 Sep 2021, Published online: 20 Oct 2021

References

  • AFNOR, NF P18-560. (1990). Retrieved March 21, 2018, from https://www.boutique.afnor.org/norme/nf-p18-560/granulats-analyse-granulometrique-par-tamisage/article/893862/fa013308.
  • Aït-Mokhtar, A., Amiri, O., Dumargue, P., & Bouguerra, A. (2004a). On the applicability of Washburn law: study of mercury and water flow properties in cement-based materials. Materials and Structures, 37(2), 107–113. https://doi.org/10.1007/BF02486606
  • Aı¨T-Mokhtar, A., Amiri, O., Poupard, O., & Dumargue, P. (2004b). A new method for determination of chloride flux in cement-based materials from chronoamperometry. Cement and Concrete Composites, 26(4), 339–345. https://doi.org/10.1016/S0958-9465(03)00008-8
  • Albinsson, Y., Andersson, K., Börjesson, S., & Allard, B. (1996). Diffusion of radionuclides in concrete and concrete-bentonite systems. Journal of Contaminant Hydrology, 21(1–4), 189–200. https://doi.org/10.1016/0169-7722(95)00046-1
  • Andrade, C. (1993). Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cement and Concrete Research, 23(3), 724–742. https://doi.org/10.1016/0008-8846(93)90023-3
  • Andrade, C., Sanjuán, M. A., Recuero, A., & Río, O. (1994). Calculation of chloride diffusivity in concrete from migration experiments, in non steady-state conditions. Cement and Concrete Research, 24(7), 1214–1228. https://doi.org/10.1016/0008-8846(94)90106-6
  • Arliguie, G., & Hornain, H. (2007). Grandeurs associées à la Durabilité des Bétons. Paris Presse L’Ecole Natl. Ponts Chaussées.
  • Arsenault, J. (1999). Etude Des Mécanismes de Transport Des Ions Chlore Dans le Béton en Vue de la Mise au Point D’un Essai de Migration.
  • ASTM C1202-17. (2017). Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM International.
  • Atkins, P., & Paula, J. D. (2006). Atkins’ physical chemistry (pp. 77). W. H. Freeman and Company.
  • Atkinson, A., & Nickerson, A. K. (1988). Diffusion and sorption of cesium, strontium, and iodine in water-saturated cement. Nuclear Technology., 81(1), 100–113. https://doi.org/10.13182/NT88-A34082
  • Bajja, Z., Dridi, W., Larbi, B., & Bescop, P. L. (2015). The validity of the formation factor concept from through-out diffusion tests on Portland cement mortars. Cement and Concrete Composites, 63, 76–83. https://doi.org/10.1016/j.cemconcomp.2015.07.014
  • Bigas, J.-P. (1994). La diffusion des ions chlore dans les mortiers [PhD Thesis]. INSA.
  • Bourbatache, K., Millet, O., & Aït-Mokhtar, A. (2012a). Ionic transfer in charged porous media. Periodic homogenization and parametric study on 2D microstructures. International Journal of Heat and Mass Transfer, 55(21–22), 5979–5991. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.008
  • Bourbatache, K., Millet, O., Aït-Mokhtar, A., & Amiri, O. (2012b). Modeling the chlorides transport in cementitious materials by periodic homogenization. Transport in Porous Media, 94(1), 437–459. https://doi.org/10.1007/s11242-012-0013-1
  • Castellote, M., Andrade, C., & Alonso, C. (2001). Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests. Cement and Concrete Research, 31(10), 1411–1420. https://doi.org/10.1016/S0008-8846(01)00562-2
  • Chatterji, S., & Kawamura, M. (1992). Electrical double layer, ion transport and reactions in hardened cement paste. Cement and Concrete Research., 22(5), 774–782. https://doi.org/10.1016/0008-8846(92)90101-Z
  • Collepardi, M., Marcialis, A., & Turriziani, R. (1972). Penetration of chloride ions into cement pastes and concretes. Journal of the American Ceramic Society, 55(10), 534–535. https://doi.org/10.1111/j.1151-2916.1972.tb13424.x
  • Debye, P., & Hückel, E. (1954). On the theory of electrolytes. I. Freezing point depression and related phenomena. Collect. Pap. Peter JW Debye, 217–263.
  • Delagrave, A., Marchand, J., & Samson, E. (1996). Prediction of diffusion coefficients in cement-based materials on the basis of migration experiments. Cement and Concrete Research, 26(12), 1831–1842. https://doi.org/10.1016/S0008-8846(96)00170-6
  • Friedmann, H., Amiri, O., & Aït-Mokhtar, A. (2008). Physical modeling of the electrical double layer effects on multispecies ions transport in cement-based materials. Cement and Concrete Research., 38(12), 1394–1400. https://doi.org/10.1016/j.cemconres.2008.06.003
  • Friedmann, H., Amiri, O., Aı¨T-Mokhtar, A., & Dumargue, P. (2004). A direct method for determining chloride diffusion coefficient by using migration test. Cement and Concrete Research, 34(11), 1967–1973. https://doi.org/10.1016/j.cemconres.2004.01.009
  • Gagneux, G., & Millet, O. (2014). Homogenization of the Nernst-Planck-Poisson System by two-scale convergence. Journal of Elasticity, 114(1), 69–84. . https://doi.org/10.1007/s10659-013-9427-4
  • Glaus, M. A., Aertsens, M., Appelo, C. A. J., Kupcik, T., Maes, N., Van Laer, L., & Van Loon, L. R. (2015). Cation diffusion in the electrical double layer enhances the mass transfer rates for Sr2+, Co2+ and Zn2+ in compacted illite. Geochimica et Cosmochimica Acta, 165, 376–388. . https://doi.org/10.1016/j.gca.2015.06.014
  • Glaus, M. A., Frick, S., Rossé, R., & Van Loon, L. R. (2010). Comparative study of tracer diffusion of HTO, 22 Na + and 36 Cl − in compacted kaolinite, illite and montmorillonite. Geochimica et Cosmochimica Acta., 74(7), 1999–2010. . https://doi.org/10.1016/j.gca.2010.01.010
  • Graham, T. (1850). I. The Bakerian Lecture.—On the diffusion of liquids. Philosophical Transactions of the Royal Society B, 140, 1–46. .
  • Hamami, A. A., Turcry, P., & Aït-Mokhtar, A. (2012). Influence of mix proportions on microstructure and gas permeability of cement pastes and mortars. Cement and Concrete Research., 42(2), 490–498. . https://doi.org/10.1016/j.cemconres.2011.11.019
  • Hauck, K. (1993). The effect of curing temperature and silica fume on chloride migration and pore structure of high-strength concrete. University of Trondheim.
  • Herbert, H. (1943). The Physical Chemistry of Electrolytic Solutions. Reinhold Publishing Corporation.
  • Kissinger, P., & Heineman, W. R. (1996). Laboratory techniques in electroanalytical chemistry (2nd ed., Revised and Expanded). CRC Press.
  • Loche, J.-M., Ammar, A., & Dumargue, P. (2005). Influence of the migration of chloride ions on the electrochemical impedance spectroscopy of mortar paste. Cement and Concrete Research, 35(9), 1797–1803. https://doi.org/10.1016/j.cemconres.2004.07.040
  • Loche, J.-M. (2001). Etude du transfert d’ions chlorures à travers des mortiers de ciment par diffusion-migration: suivi par spectroscopie d’impédance électrochimique [PhD Thesis].
  • Locoge, P., Massat, M., Ollivier, J. P., & Richet, C. (1992). Ion diffusion in microcracked concrete. Cement and Concrete Research, 22(2–3), 431–438. https://doi.org/10.1016/0008-8846(92)90085-A
  • Longuet, P., Burglen, L., & Zelwer, A. (1973). The liquid phase of hydrated cement. Revue des matériaux de construction, 676, 35–41.
  • Marchand, J., & Samson, E. (2009). Predicting the service-life of concrete structures–Limitations of simplified models. Cement and Concrete Composites., 31(8), 515–521. https://doi.org/10.1016/j.cemconcomp.2009.01.007
  • Narsilio, G. A., Li, R., Pivonka, P., & Smith, D. W. (2007). Comparative study of methods used to estimate ionic diffusion coefficients using migration tests. Cement and Concrete Research., 37(8), 1152–1163. https://doi.org/10.1016/j.cemconres.2007.05.008
  • Nguyen, P. T., & Amiri, O. (2016). Study of the chloride transport in unsaturated concrete: Highlighting of electrical double layer, temperature and hysteresis effects. Construction and Building Materials., 122, 284–293. https://doi.org/10.1016/j.conbuildmat.2016.05.154
  • Nilsson, L. O., Poulsen, E., Sandberg, P., Sørensen, H. E., & Klinghoffer, O. (1996). HETEK, chloride penetration into concrete, state-of-the-art, transport processes, corrosion initiation, test methods and prediction models. Den.
  • Ohm, G. S. (1789–1854). A. du texte Ohm, Die galvanische Kette: mathematisch bearbeitet / von Dr. G. S. Ohm. T. H. Rieman, Berlin, 1827. Retrieved March 21, 2018, from http://gallica.bnf.fr/ark:/12148/bpt6k33646.
  • Page, C. L., Short, N. R., & Tarras, A. E. (1981). Diffusion of chloride ions in hardened cement pastes. Cement and Concrete Research, 11(3), 395–406. https://doi.org/10.1016/0008-8846(81)90111-3
  • Patel, R. A., Phung, Q. T., Seetharam, S. C., Perko, J., Jacques, D., Maes, N., De Schutter, G., Ye, G., & Van Breugel, K. (2016). Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches. Cement and Concrete Research, 90, 52–72. https://doi.org/10.1016/j.cemconres.2016.09.015
  • Phung, Q. T., Maes, N., Jacops, E., Jacques, D., De Schutter, G., & Ye, G. (2019). Insights and issues on the correlation between diffusion and microstructure of saturated cement pastes. Cement and Concrete Composites, 96, 106–117. https://doi.org/10.1016/j.cemconcomp.2018.11.018
  • Pradelle, S., Thiéry, M., & Baroghel-Bouny, V. (2017). Sensitivity analysis of chloride ingress models: Case of concretes immersed in seawater. Construction and Building Materials, 136, 44–56. https://doi.org/10.1016/j.conbuildmat.2017.01.019
  • Provete Vincler, J., Sanchez, T., Turgeon, V., Conciatori, D., & Sorelli, L. (2019). A modified accelerated chloride migration tests for UHPC and UHPFRC with PVA and steel fibers. Cement and Concrete Research, 117, 38–44. https://doi.org/10.1016/j.cemconres.2018.12.006
  • Revil, A. (2005). Characterization of transport properties of argillaceous sediments: Application to the Callovo-Oxfordian argillite. Journal of Geophysical Research, 110(B6). https://doi.org/10.1029/2004JB003442
  • Samson, E., Marchand, J., & Snyder, K. A. (2003). Calculation of ionic diffusion coefficients on the basis of migration test results. Materials and Structures, 36(3), 156–165. https://doi.org/10.1617/14002
  • Samson, E., Marchand, J., Henocq, P., & Beauséjour, P. (2008). Recent advances in the determination of ionic diffusion using migration test results. International RILEM Symposium on Concrete Modelling - ConMod'08 (pp. 65–78). RILEM Publications SARL.
  • Sanchez, T., Henocq, P., Millet, O., & Aït-Mokhtar, A. (2020). Coupling PhreeqC with electro-diffusion tests for an accurate determination of the diffusion properties on cementitious materials. Journal of Electroanalytical Chemistry., 858, 113791. https://doi.org/10.1016/j.jelechem.2019.113791
  • Savoye, S., Michelot, J.-L., Matray, J.-M., Wittebroodt, C., & Mifsud, A. (2012). A laboratory experiment for determining both the hydraulic and diffusive properties and the initial pore-water composition of an argillaceous rock sample: A test with the Opalinus clay (Mont Terri, Switzerland). Journal of Contaminant Hydrology, 128(1–4), 47–57. https://doi.org/10.1016/j.jconhyd.2011.09.011
  • Schmidt, F., & Rostásy, F. S. (1993). A method for the calculation of the chemical composition of the concrete pore solution. Cement and Concrete Research, 23(5), 1159–1168. https://doi.org/10.1016/0008-8846(93)90176-A
  • Shi, C. (2003). Another look at the rapid chloride permeability test (ASTM C1202 or ASSHTO T277). FHWA Resource Center.
  • Tang, L. (1996). Chloride transport in concrete-measurement and prediction [PhD thesis].
  • Truc, O., Ollivier, J. P., & Carcassès, M. (2000). A new way for determining the chloride diffusion coefficient in concrete from steady state migration test. Cement and Concrete Research, 30(2), 217–226. https://doi.org/10.1016/S0008-8846(99)00232-X
  • Whiting, D. (1981). Rapid determination of the chloride permeability of concrete. Final Rep. Portland Cem. Assoc. Skokie IL Constr. Technol. Labs.
  • Wittebroodt, C., Savoye, S., Frasca, B., Gouze, P., & Michelot, J.-L. (2012). Diffusion of HTO, 36Cl- and 125I- in Upper Toarcian argillite samples from Tournemire: Effects of initial iodide concentration and ionic strength. Applied Geochemistry, 27(7), 1432–1441. https://doi.org/10.1016/j.apgeochem.2011.12.017
  • Xu, A., & Chandra, S. (1994). A discussion of the paper “calculation of chloride diffusion coefficients in concrete from ionic migration measurements” by C. Andrade. Cement and Concrete Research., 24(2), 375–379. https://doi.org/10.1016/0008-8846(94)90066-3
  • Younsi, A., Aït-Mokhtar, A., & Hamami, A. A. (2017). Investigation of some electrochemical phenomena induced during chloride migration test on cementitious materials. European Journal of Environmental and Civil Engineering, 21(3), 303–318. https://doi.org/10.1080/19648189.2015.1112845
  • Zhang, T. (1997). Chloride diffusivity in concrete and its measurement from steady state migration testing. Norwegian University of Science and Technology.
  • Zhang, T., & Gjørv, O. E. (1994). An electrochemical method for accelerated testing of chloride diffusivity in concrete. Cement and Concrete Research., 24(8), 1534–1548. https://doi.org/10.1016/0008-8846(94)90168-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.