458
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A simplified geopolymer concrete mix design considering five mineral admixtures

&
Pages 7572-7585 | Received 23 Mar 2021, Accepted 02 Nov 2021, Published online: 23 Nov 2021

References

  • Abdullah, H. H., Shahin, M. A., & Sarker, P. (2019). Use of fly-ash geopolymer incorporating ground granulated slag for stabilisation of kaolin clay cured at ambient temperature. Geotechnical and Geological Engineering, 37(2), 721–740. https://doi.org/10.1007/s10706-018-0644-2
  • Ahmed, H. U., Mohammed, A. S., Mohammed, A. A., & Faraj, R. H. (2021). Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS One, 16(6), e0253006. https://doi.org/10.1371/journal.pone.0253006
  • Alanazi, H., Hu, J., & Kim, Y. R. (2019). Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Construction and Building Materials, 197, 747–756. https://doi.org/10.1016/j.conbuildmat.2018.11.172
  • Bellum, R. R., Nerella, R., Rama, S., & Madduru, C. (2019). Mix design and mechanical properties of fly ash and GGBFS-Synthesized Alkali-Activated Concrete (AAC). Infrastructures 2019, 4, 20. https://doi.org/10.3390/infrastructures4020020
  • Bureau of Indian Standards (BIS). (2019). Concrete mix proportioning – Guidelines (pp. 1–40). Bur. Indian Stand. Second Rev, January.
  • Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496. https://doi.org/10.1016/j.conbuildmat.2021.122496
  • Ferdous, M. W., Kayali, O., & Khennane, A. (2013). A detailed procedure of mix design for fly ash based geopolymer concrete. In Proc. 4th Asia-Pacific Conf. FRP Struct. APFIS 2013, December (pp. 11–13).
  • Guades, E. J. (2019). Effect of coarse aggregate size on the compressive behaviour of geopolymer concrete. European Journal of Environmental and Civil Engineering, 23(6), 693–709. https://doi.org/10.1080/19648189.2017.1304276
  • Imtiaz, L., Ur Rehman, S. K., Memon, S. A., Khan, M. K., & Javed, M. F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete. Applied Sciences, 10(21), 7838–7856. https://doi.org/10.3390/app10217838
  • IS 456. (2000). Concrete, plain and reinforced (pp. 1–114). Bur. Indian Stand. Delhi.
  • Jethwani, R., Thakur, M. S., & Das Adhikary, S. (2020). Development of geopolymer concrete for sustainable infrastructures. In: Shukla S., Barai S., Mehta A. (Eds.), Advances in Sustainable Construction Materials and Geotechnical Engineering. Lecture Notes in Civil Engineering, vol 35. Springer, Singapore. https://doi.org/10.1007/978-981-13-7480-7_1
  • Kanniga Devi, R., Muthukannan, M., Babu Chokkalingam, R., Babu Malayali, A., Murali, M., & Maridurai, T. (2021). A study on evolution of geopolymer concrete. Materials Today: Proceedings, 46, 3975–3978. https://doi.org/10.1016/j.matpr.2021.02.524
  • Kaya, M., Uysal, M., Yilmaz, K., Karahan, O., & Atis, C. D. (2020). Mechanical properties of class C and F fly ash geopolymer mortars. Gradjevinar, 72(4), 297–309. https://doi.org/10.14256/JCE.2421.2018
  • Khan, M. A., Memon, S. A., Farooq, F., Javed, M. F., Aslam, F., & Alyousef, R. (2021). Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest. Advances in Civil Engineering, 2021, 1–17. https://doi.org/10.1155/2021/6618407
  • Kotop, M. A., El-Feky, M. S., Alharbi, Y. R., Abadel, A. A., Binyahya, A. S., & Kohail, M. (2021). Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Engineering Journal. https://doi.org/10.1016/j.asej.2021.04.022
  • Krishna Rao, A., & Rupesh Kumar, D. (2020). Effect of various alkaline binder ratio on geopolymer concrete under ambient curing condition. Materials Today: Proceedings, 27, 1768–1773. https://doi.org/10.1016/j.matpr.2020.03.682
  • Kulasuriya, C., Vimonsatit, V., & Dias, W. P. S. (2021). Performance based energy, ecological and financial costs of a sustainable alternative cement. Journal of Cleaner Production, 287, 125035. https://doi.org/10.1016/j.jclepro.2020.125035
  • Kuunreddy, S., & Bala Murugan, S. (2021). Role of NaOH concentration on kinetic ratios of eco-friendly geopolymer concrete cured under ambient temperature.  In: Jayaprakash J., Choong K. K., Anwar M. P. (Eds.), Advances in Construction Materials and Structures. Lecture Notes in Civil Engineering, vol 111. Springer, Singapore. https://doi.org/10.1007/978-981-15-9162-4_16
  • Li, N., Shi, C., Zhang, Z., Wang, H., & Liu, Y. (2019). A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering, 178, 107490. https://doi.org/10.1016/j.compositesb.2019.107490
  • Lloyd, N. A., & Rangan, B. V. (2010). Geopolymer concrete with fly ash. In 2nd Int. Conf. Sustain. Constr. Mater. Technol. (Vol. 7, pp. 1493–1504).
  • Luga, E., Atis, C. D., Karahan, O., Ilkentapar, S., & Gorur, E. B. (2017). Strength properties of slag/fly ash blends activated with sodium metasilicate. Gradjevinar, 69(3), 199–205. https://doi.org/10.14256/JCE.1468.2015
  • Mallikarjuna Rao, G., & Gunneswara Rao, T. D. (2018). A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete. Australian Journal of Civil Engineering, 16(1), 53–63. https://doi.org/10.1080/14488353.2018.1450716
  • Mohajerani, A., Suter, D., Jeffrey-Bailey, T., Song, T., Arulrajah, A., Horpibulsuk, S., & Law, D. (2019). Recycling waste materials in geopolymer concrete. Clean Technologies and Environmental Policy, 21(3), 493–515. https://doi.org/10.1007/s10098-018-01660-2
  • Mousa, M. I., Mahdy, M. G., Abdel-Reheem, A. H., & Yehia, A. Z. (2015). Mechanical properties of self-curing concrete (SCUC). HBRC Journal, 11(3), 311–320. https://doi.org/10.1016/j.hbrcj.2014.06.004
  • Naghizadeh, A., & Ekolu, S. O. (2020). Effects of compositional and physico–chemical mix design parameters on properties of fly ash geopolymer mortars. Silicon. https://doi.org/10.1007/s12633-020-00799-2
  • Nguyen, K. T., Lee, Y. H., Lee, J., & Ahn, N. (2013). Acid resistance and curing properties for green fly ash-geopolymer concrete. Journal of Asian Architecture and Building Engineering, 12(2), 317–322. https://doi.org/10.3130/jaabe.12.317
  • Paul, E. (2021). Performance assessment of geopolymer concrete using various industrial wastes. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.660
  • Prashanth, S., & Vijayalaxmi Kedilaya, B. (2019). Can geopolymer concrete replace the conventional concrete?—State of the art (Vol. 25). Springer.
  • Priyanka, M., & Ruben, N. (2019). Sustainable construction and building materials—A review on performance of geopolymer in concrete. In Lecture notes in civil engineering (Vol. 25, pp. 245–251). Springer.
  • Rabiaa, E., Mohamed, R. A. S., Sofi, W. H., & Tawfik, T. A. (2020). Developing geopolymer concrete properties by using nanomaterials and steel fibers. Advances in Materials Science and Engineering, 2020, 1–12. https://doi.org/10.1155/2020/5186091
  • Ramani, P. V., & Chinnaraj, P. K. (2015). Geopolimerni beton s dodatkom granulirane zgure i crnoe pepela rižinih liuski. Gradjevinar, 67(8), 741–747. https://doi.org/10.14256/JCE.1208.2015
  • Rattanasak, U., & Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer. Minerals Engineering, 22(12), 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022
  • Teymouri, M., Behfarnia, K., & Shabani, A. (2021). Mix design effects on the durability of alkali-activated slag concrete in a hydrochloric acid environment. Sustain, 13(14), 8096. https://doi.org/10.3390/su13148096
  • Upshaw, M., & Cai, C. S. (2021). Feasibility study of MK-based geopolymer binder for RAC applications: Effects of silica fume and added CaO on compressive strength of mortar samples. Case Studies in Construction Materials, 14, e00500. https://doi.org/10.1016/j.cscm.2021.e00500
  • Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lukey, G. C. (2002). The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chemical Engineering Journal and the Biochemical Engineering Journal, 89, 63–73.
  • Xie, T., Visintin, P., Zhao, X., & Gravina, R. (2020). Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach. Construction and Building Materials, 256, 119380. https://doi.org/10.1016/j.conbuildmat.2020.119380
  • Zhang, H. (2019). Investigating various factors affecting the long-term compressive strength of heat-cured fly ash geopolymer concrete and the use of orthogonal experimental design method. International Journal Concrete Structures Materials, 13(1), 63. https://doi.org/10.1186/S40069-019-0375-7
  • Zhang, H., Li, L., Yuan, C., Wang, Q., Sarker, P. K., & Shi, X. (2020). Deterioration of ambient-cured and heat-cured fly ash geopolymer concrete by high temperature exposure and prediction of its residual compressive strength. Construction and Building Materials, 262, 120924. https://doi.org/10.1016/j.conbuildmat.2020.120924

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.