911
Views
5
CrossRef citations to date
0
Altmetric
Review Article

State of the art on the mechanical properties of pervious concrete

, &
Pages 7727-7755 | Received 24 Apr 2021, Accepted 15 Nov 2021, Published online: 29 Nov 2021

References

  • ACIC. 318. (2011). Building code requirements for structural concrete (ACI 318-11m) and commentary.
  • ACI (American C. Institute). (2010). Report on pervious concrete.
  • ACI 211. (2002). Guide for selecting proportions for no-slump concrete reported by ACI committee 211. American Concrete Institute, 2, 1–26.
  • ACI 552R-10. (2010). Report on pervious concrete, American concrete institute.
  • AFNOR-NF P18-459 (March 2010b), Concrete - Testing hardened concrete - Testing porosity and density, 9 p.
  • Agar-Ozbek, A. S., Weerheijm, J., Schlangen, E., & Van Breugel, K. (2013). Investigating porous concrete with improved strength: Testing at different scales. Construction and Building Materials., 41, 480–490. https://doi.org/10.1016/j.conbuildmat.2012.12.040
  • Ahmad, S. H., & Shah, S. P. (1985). Structural properties of high strength concrete and its implications for precast prestressed concrete. PCI Journal, 30(6), 92–119. https://doi.org/10.15554/pcij.11011985.92.119
  • Ahmed, M., El Hadi, K. M., Hasan, M. A., Mallick, J., & Ahmed, A. (2014). Evaluating the co-relationship between concrete flexural tensile strength and compressive strength. International Journal of Structural Engineering, 5(2), 115–131. https://doi.org/10.1504/IJSTRUCTE.2014.060902
  • Akand, L., Yang, M., & Gao, Z. (2016). Characterization of pervious concrete through image based micromechanical modeling. Construction and Building Materials, 114, 547–555. https://doi.org/10.1016/j.conbuildmat.2016.04.005
  • Aoki, Y. (2009). Development of pervious concrete.
  • Asfour, S., & Asfour, S. (2017). Récupération d ’ énergie dans les chaussées pour leur maintien hors gel To cite this version: Présentée par.
  • Azzout, Y., Barraud, S., Cres, F. N., & Alfakih, E. (1994). Techniques alternatives en assainissement pluvial. Technique et Documentation, 372.
  • Bean, E. Z., Hunt, W. F., Bidelspach, D. A., & Burak, R. J. (2004). Study on the infiltration rate of permeable pavements.
  • Beeldens, A., Van Gemert, D., Poupeleer, A. S., & Cornelis, B. (2001). Behavior of porous PCC under freeze-thaw cycling.
  • Bertrand-Krajewski, J.-L. (2006). Cours d’hydrologie urbaine. INSA Lyon.
  • Bonicelli, A., Giustozzi, F., & Crispino, M. (2015a). Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Construction and Building Materials, 91, 102–110. https://doi.org/10.1016/j.conbuildmat.2015.05.012
  • Bonicelli, A., Giustozzi, F., Crispino, M., & Borsa, M. (2015b). Evaluating the effect of reinforcing fibres on pervious concrete volumetric and mechanical properties according to different compaction energies. European Journal of Environmental and Civil Engineering, 19(2), 184–198. https://doi.org/10.1080/19648189.2014.939308
  • Brake, N. A., Allahdadi, H., & Adam, F. (2016). Flexural strength and fracture size effects of pervious concrete. Construction and Building Materials., 113, 536–543. https://doi.org/10.1016/j.conbuildmat.2016.03.045
  • Bruinsma, J. (2017). Guidance for usage of permeable pavement at airports, no. Project 02–64.
  • Bush, E., Cawley, B., Durham, S., MacKenzie, K., Rottman, J., & Thomaz, D. (2008). Specifier’s guide for pervious concrete pavement design, p. 24.
  • Cackler, E. T., Ferragut, T., Harrington, D. S., Rasmussen, R. O., & Wiegand, P. (2006). Evaluation of US and European concrete pavement noise reduction methods.
  • Chandrappa, A. K., & Biligiri, K. P. (2016a). Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach. Construction and Building Materials, 123, 627–637. https://doi.org/10.1016/j.conbuildmat.2016.07.035
  • Chandrappa, A. K., & Biligiri, K. P. (2016b). Influence of mix parameters on pore properties and modulus of pervious concrete: An application of ultrasonic pulse velocity. Materials and Structures, 49(12), 5255–5271. https://doi.org/10.1617/s11527-016-0858-9
  • Chandrappa, A. K., & Biligiri, K. P. (2016c). Pervious concrete as a sustainable pavement material-research findings and future prospects: A state-of-the-art review. Construction and Building Materials, 111, 262–274. https://doi.org/10.1016/j.conbuildmat.2016.02.054
  • Chandrappa, A. K., & Biligiri, K. P. (2018). Pore structure characterization of pervious concrete using X-ray microcomputed tomography. Journal of Materials in Civil Engineering, 30(6), 04018108. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002285
  • Chen, X., Wu, S., & Zhou, J. (2013). Influence of porosity on compressive and tensile strength of cement mortar. Construction and Building Materials, 40, 869–874. https://doi.org/10.1016/j.conbuildmat.2012.11.072
  • Cheng, A., Hsu, H. M., Chao, S. J., & Lin, K. L. (2011). Experimental study on properties of pervious concrete made with recycled aggregate. International Journal of Pavement Research and Technology., 4(2), 104–110. https://doi.org/10.6135/ijprt.org.tw/2011.4(2).104.
  • Chindaprasirt, P., Hatanaka, S., Mishima, N., Yuasa, Y., & Chareerat, T. (2009). Effects of binder strength and aggregate size on the compressive strength and void ratio of porous concrete. International Journal of Minerals, Metallurgy, and Materials, 16(6), 714–719.
  • Chindaprasirt, P., Nuaklong, P., Zaetang, Y., Sujumnongtokul, P., & Sata, V. (2015). Mechanical and thermal properties of recycling lightweight pervious concrete. Arabian Journal for Science and Engineering, 40(2), 443–450. https://doi.org/10.1007/s13369-014-1563-z
  • Choi, Y., & Yuan, R. L. (2005). Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC. Cement and Concrete Research, 35(8), 1587–1591. https://doi.org/10.1016/j.cemconres.2004.09.010
  • Christory, J. P., & Abdo, J. (1999). Voiries et amenagements urbains en beton-structures reservoirs et amenagements qualitatifs. Rev. Gen. DES ROUTES, no. 775.
  • Crouch, L. K. (2006a). Estimating pervious PCC pavement design inputs with compressive strength and effective void content. Concrete Technology Forum, 15. http://www.rmc-foundation.org/images/PCRCFiles/StructuralDesign&Properties/EstimatingPerviousPCCPavementDesignInputswithCompressive StrengthandEffectiveVoidContent.pdf.
  • Crouch, L. K. (2006b). Estimating pervious PCC pavement design inputs with compressive strength and effective void content. Maryl. Silver, 15.
  • Crouch, L. K., Pitt, J., & Hewitt, R. (2007). Aggregate effects on pervious Portland cement concrete static modulus of elasticity. Journal of Materials in Civil Engineering, 19(7), 561–568. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(561)
  • Cui, X., Zhang, J., Huang, D., Liu, Z., Hou, F., Cui, S., Zhang, L., & Wang, Z. (2017). Experimental study on the relationship between permeability and strength of pervious concrete. Journal of Materials in Civil Engineering, 29(11), 04017217. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002058
  • Dawson, A. (2008). Water in road structures: Movement, drainage & effects (Vol. 5). Springer Science & Business Media.
  • Debnath, B., & Sarkar, P. P. (2019). Permeability prediction and pore structure feature of pervious concrete using brick as aggregate. Construction and Building Materials., 213, 643–651. https://doi.org/10.1016/j.conbuildmat.2019.04.099
  • Debnath, B., & Sarkar, P. P. (2020). Characterization of pervious concrete using over burnt brick as coarse aggregate. Construction and Building Materials, 242, 118154. https://doi.org/10.1016/j.conbuildmat.2020.118154
  • Delatte, N., Mrkajic, A., & Miller, D. I. (2009). Field and laboratory evaluation of pervious concrete pavements. Transportation Research Record: Journal of the Transportation Research Board, 2113(1), 132–139. https://doi.org/10.3141/2113-16
  • Deo, O., & Neithalath, N. (2010). Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features. Materials Science and Engineering: A, 528(1), 402–412. https://doi.org/10.1016/j.msea.2010.09.024
  • Deo, O., & Neithalath, N. (2011). Compressive response of pervious concretes proportioned for desired porosities. Construction and Building Materials, 25(11), 4181–4189. https://doi.org/10.1016/j.conbuildmat.2011.04.055
  • Deo, O., Sumanasooriya, M., & Neithalath, N. (2010). Permeability reduction in pervious concretes due to clogging: Experiments and modeling. Journal of Materials in Civil Engineering, 22(7), 741–751. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000079
  • Duong, N. T. (2016). Cartographie et caractérisation acoustiques des matériaux composites: Application à l ’ évaluation du taux volumique de porosité dans un matériau composite Ngoc Tan Duong.
  • Elango, K. S., & Revathi, V. (2017). Fal-G binder pervious concrete. Construction and Building Materials., 140, 91–99. https://doi.org/10.1016/j.conbuildmat.2017.02.086
  • Elango, K. S., Vivek, D., Prakash, G. K., Paranidharan, M. J., Pradeep, S., & Prabhukesavaraj, M. (2020). Strength and permeability studies on PPC binder pervious concrete using palm jaggery as an admixture. Materials Today: Proceedings, 37, 2329–2333. https://doi.org/10.1016/j.matpr.2020.08.006.
  • El-Hassan, H., Kianmehr, P., & Zouaoui, S. (2019). Properties of pervious concrete incorporating recycled concrete aggregates and slag. Construction and Building Materials, 212, 164–175. https://doi.org/10.1016/j.conbuildmat.2019.03.325
  • Fahed, J. (2019). Etude numérique du potentiel de rafraichissement des techniques de réduction des ilots de chaleur urbain (ICU) sous climat méditerranéen.
  • Faleyeux, J. (2015). Elements modulaires en beton pour revetement des ouvrages d’infiltration des eaux pluviales: référentiel technique. Epernon, Fr. CERIB, 2015.
  • Farny, J., & In, F. (2004). Aging gracefully: Architectural concrete panels turn 40 years old. Concrete Technology Today, 1–8.
  • Gaedicke, C., Torres, A., Huynh, K. C. T., & Marines, A. (2016). A method to correlate splitting tensile strength and compressive strength of pervious concrete cylinders and cores. Construction and Building Materials., 125, 271–278. https://doi.org/10.1016/j.conbuildmat.2016.08.031
  • Gesoğlu, M., Güneyisi, E., Khoshnaw, G., & İpek, S. (2014). Abrasion and freezing-thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials, 73, 19–24. https://doi.org/10.1016/j.conbuildmat.2014.09.047
  • Ghafoori, N., & Dutta, S. (1995). Laboratory investigation of compacted no-fines concrete for paving materials. Journal of Materials in Civil Engineering, 7(3), 183–191. https://doi.org/10.1061/(ASCE)0899-1561(1995)7:3(183)
  • Ghorbel, E., & De Cergy-Pontoise, U. (2014). Thèse de doctorat pour obtenir le Doctorat de l ’ Université de Caen Basse -Normandie Spécialité: Génie des Matériaux Étude du comportement hydromécanique des bétons drainants à base de coproduits coquilliers
  • Giguère, M. (2009). Mesures de lutte aux îlots de chaleur urbains.
  • Goede, W. G. (2009). Pervious Concrete: Investigation into structural performance and evaluation of the applicability of existing thickness design methods.
  • Haselbach, L. M., & Freeman, R. M. (2006). Vertical porosity distributions in pervious concrete pavement. ACI Materials Journal., 103(6), 452.
  • Haselbach, L. M., & Freeman, R. M. (2007). Effectively estimating in situ porosity of pervious concrete from cores. Journal of ASTM International, 4(7), 1–11. https://doi.org/10.1520/JAI100293
  • Henderson, V. (2012). Evaluation of the performance of pervious concrete pavement in the Canadian Climate. 276.
  • Hook, W. R., Cole, L. W., Cost, V. T., Diulus, D. H., & Mullarky, J. I. (2001). Guide for design and construction of concrete parking lots reported by ACI Committee 330. Concrete, 92 1–32.
  • Huang, J., Luo, Z., & Khan, M. B. E. (2020). Impact of aggregate type and size and mineral admixtures on the properties of pervious concrete: An experimental investigation. Construction and Building Materials, 265, 120759. https://doi.org/10.1016/j.conbuildmat.2020.120759
  • Huang, B., Wu, H., Shu, X., & Burdette, E. G. (2010). Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Construction and Building Materials, 24(5), 818–823. https://doi.org/10.1016/j.conbuildmat.2009.10.025
  • Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Construction and Building Materials, 50, 524–529. https://doi.org/10.1016/j.conbuildmat.2013.09.022
  • Infiltration, S. D., Eaux, D. E. S., & Principaux, I. O. (2008). Les revêtements perméables, no. 2007.
  • Jayasuriya, N., & Kadurupokune, N. (2008). Impact of pervious pavements on drainage infrastructure. 11th International Urban Drainage Conference, pp. 1–10.
  • Jin, N. (2010). Fly ash applicability in pervious concrete. The Ohio State University.
  • Jing Yang, G. J. (2019). Experimental study on infiltration properties of pervious concrete. Lecture Notes in Civil Engineering, 30, 367–373. https://doi.org/10.1007/978-981-13-6717-5_36.
  • Jones, K. (1999). Density of concrete. Physics Factbook.
  • Joung, Y., & Grasley, Z. (2008). Evaluation and optimization of durable pervious concrete for use in urban areas. Research Report SWUTC/08/167163-1. 7(2), 82.
  • Juki, M. I., Awang, M., Annas, M. M. K., Boon, K. H., Othman, N., Binti Abdul Kadir, A., Roslan, M. A., & Khalid, F. S. (2013). Relationship between compressive, splitting tensile and flexural strength of concrete containing granulated waste polyethylene terephthalate (PET) bottles as fine aggregate. Advanced Materials Research, 795, 356–359. https://doi.org/10.4028/www.scientific.net/AMR.795.356
  • Kant Sahdeo, S., Ransinchung, G. D., Rahul, K. L., & Debbarma, S. (2020). Effect of mix proportion on the structural and functional properties of pervious concrete paving mixtures. Construction and Building Materials, 255, 119260. https://doi.org/10.1016/j.conbuildmat.2020.119260
  • Kayhanian, M., Anderson, D., Harvey, J. T., Jones, D., & Muhunthan, B. (2012). Permeability measurement and scan imaging to assess clogging of pervious concrete pavements in parking lots. Journal of Environmental Management, 95(1), 114–123. https://doi.org/10.1016/j.jenvman.2011.09.021
  • Kevern, J. T. (2008). Advancements in pervious concrete technology. Iowa State University, 1–108.
  • Kevern, J. T., Schaefer, V. R., Wang, K., & Suleiman, M. T. (2008). Pervious concrete mixture proportions for improved freeze-thaw durability. Journal of ASTM International, 5(2), 101320. https://doi.org/10.1520/JAI101320
  • Kevern, J. T., Schaefer, V. R., Wang, K., & Wiegand, P. (2010). Durability of a new generation pervious concrete mixtures designed for roadway applications.
  • Kevern, J. T., & Schaefer, V. R. (2013). Mixture proportioning considerations for improved freeze-thaw durability of pervious concrete. ISCORD 2013 Planning for Sustainable Cold Regions – Proceedings of the 10th International Symposium Cold Regions Development, pp. 471–481. https://doi.org/10.1061/9780784412978.046
  • Kia, A., Wong, H. S., & Cheeseman, C. R. (2017). Clogging in permeable concrete: A review. Journal of Environmental Management, 193, 221–233. https://doi.org/10.1016/j.jenvman.2017.02.018
  • Kin, M. W. (2006). An overview of pervious concrete applications in stormwater management and pavement systems Vol. 3(May), 58.
  • Kováč, M., & Sičáková, A. (2017). Pervious concrete as a sustainable solution for pavements in urban areas. 10th International Conference on Environmental Engineering, ICEE 2017, vol. 2017(April), pp. 27–28, https://doi.org/10.3846/enviro.2017.031
  • Kuang, X., Sansalone, J., Ying, G., & Ranieri, V. (2011). Pore-structure models of hydraulic conductivity for permeable pavement. Journal of Hydrology, 399(3-4), 148–157. https://doi.org/10.1016/j.jhydrol.2010.11.024
  • Kunieda, H. M., Tamai, M., Muzuguchi, H., Hatanaka, S., and Katahira, K. Y., & Nakazawa, T. (2003). Report of the JCI committee on design, construction and recent application of porous concrete. Japan Concrete Institute, p. 179.
  • Lencastre, A. (1999). Hydraulique générale, édition Eyrolles, Paris.
  • Leroux, G. (2018). Etude d ’ un système innovant de rafraîchissement basse consommation pour le bâtiment.
  • Lian, C., & Zhuge, Y. (2009). Investigation of the effect of aggregate on the performance of permeable concrete. Proceedings of the 5th International Structural Engineering and Construction Conference (ISEC-5) (pp. 505––510).
  • Lian, C., & Zhuge, Y. (2010). Optimum mix design of enhanced permeable concrete – An experimental investigation. Construction and Building Materials, 24(12), 2664–2671. https://doi.org/10.1016/j.conbuildmat.2010.04.057
  • Lian, C., Zhuge, Y., & Beecham, S. (2011). The relationship between porosity and strength for porous concrete. Construction and Building Materials, 25(11), 4294–4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005
  • Li, L. G., Feng, J. J., Zhu, J., Chu, S. H., & Kwan, A. K. H. (2021). Pervious concrete: Effects of porosity on permeability and strength. Magazine of Concrete Research, 73(2), 69–79. https://doi.org/10.1680/jmacr.19.00194
  • Li, G., Hu, Y., & Zang, X. L. (2009). Design and analysis of offset printing press plate cylinder using finite element method. Proc. 2nd Int. Conf. Model. Simulation, ICMS2009, 7, 537–540.
  • Liu, H., Luo, G., Wei, H., & Yu, H. (2018). Strength, permeability, and freeze-thaw durability of pervious concrete with different aggregate sizes, porosities, andwater-binder ratios. Applied Sciences, 8(8), 1217. https://doi.org/10.3390/app8081217.
  • Liu, R., Liu, H., Sha, F., Yang, H., Zhang, Q., Shi, S., & Zheng, Z. (2018). Investigation of the porosity distribution, permeability, and mechanical performance of pervious concretes. Processes, 6(7), 78. https://doi.org/10.3390/pr6070078
  • Liu, Z., Asce, S. M., Yu, X., & Asce, M. (2011). Laboratory evaluation of abrasion resistance of Portland cement pervious concrete. Journal of Materials in Civil Engineering, 27(September), 1239–1247. https://doi.org/10.1061/(ASCE)MT
  • Low, K., Harz, D., & Neithalath, N. (2008). Statistical characterization of the pore structure of enhanced porosity concretes.
  • Lu, J. X., Yan, X., He, P., & Poon, C. S. (2019). Sustainable design of pervious concrete using waste glass and recycled concrete aggregate. Journal of Cleaner Production, 234, 1102–1112. https://doi.org/10.1016/j.jclepro.2019.06.260
  • Luck, J. D., Workman, S. R., & Higgins, S. F. (2006). Hydrologic properties of pervious concrete. In 2006 ASAE Annual Meeting, p. 1.
  • Lund, M. S. M., Hansen, K. K., Brincker, R., Jensen, A. H., & Amador, S. D. R. (2018). Evaluation of freeze-thaw durability of pervious concrete by use of operational modal analysis. Cement and Concrete Research, 106(January), 57–64. https://doi.org/10.1016/j.cemconres.2018.01.021
  • Majersky, G. M. (2010). Filtration of polluted waters filtration of polluted waters by pervious concrete by pervious concrete by pervious concrete by pervious concrete.
  • Marolf, A., Neithalath, N., Sell, E., Wegner, K., Weiss, J., & Olek, J. (2004). Influence of aggregate size and gradation on acoustic absorption of enhanced porosity concrete. ACI Materials Journal, 101(1), 82–91. https://doi.org/10.14359/12991.
  • Mata, L. A., & Leming, M. L. (2012). Vertical distribution of sediments in pervious concrete pavement systems. ACI Materials Journal., 109(2), 149–155. doi: https://doi.org/10.14359/51683701.
  • Matsuo, Y., Morino, K., & Iwatsuki, E. (2005). A study of porous concrete using electric arc furnace oxidizing slag aggregate. Bulletin of Aichi Institute of Technology, Part B, 40(40), 117–167.
  • Meininger, R. C. (1988). No-fines pervious concrete for paving. Concrete International, 10(8), 20–27.
  • Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095
  • Montes, F., Valavala, S., & Haselbach, L. M. (2005). A new test method for porosity measurements of Portland cement pervious concrete. Journal of ASTM International, 2(1), 1–13. https://doi.org/10.1520/JAI12931
  • Mousa, M. I., Mahdy, M. G., Abdel-Reheem, A. H., & Yehia, A. Z. (2015). Mechanical properties of self-curing concrete (SCUC). HBRC Journal, 11(3), 311–320. https://doi.org/10.1016/j.hbrcj.2014.06.004
  • Mulligan, A. (2005). Attainable compressive strength of pervious concrete paving systems, p. 132.
  • Naik, T. R., Canpolat, F., & Kraus, R. N. (2013). Development and demonstration of high-carbon CCPs and FGD by-products in permeable roadway base construction. Sustainable Construction Materials and Technologies, vol. 2013-August.
  • Nassiri, S., & AlShareedah, O. (2017). Preliminary procedure for structural design of pervious concrete pavements. Dept. of Transportation. Research Office.
  • Nawy, E. G. (2008). Concrete construction engineering handbook. CRC press.
  • Neithalath, N. (2014). Development and characterization of acoustically efficient cementitious materials Submitted to the Faculty of by Narayanan Neithalath In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2004. (January 2004).
  • Neithalath, N., Sumanasooriya, M. S., & Deo, O. (2010). Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials Characterization, 61(8), 802–813. https://doi.org/10.1016/j.matchar.2010.05.004
  • Neithalath, N., Weiss, J., & Olek, J. (2006). Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance. Cement and Concrete Research, 36(11), 2074–2085. https://doi.org/10.1016/j.cemconres.2006.09.001
  • Netinger Grubeša, I., Barišić, I., Keser, T., & Vračević, M. (2019). Wearing characteristics assessment of pervious concrete pavements. Road Materials and Pavement Design, 20(3), 727–739. https://doi.org/10.1080/14680629.2017.1421568
  • Neville, A. M. (1995). Properties of concrete (Vol. 4). Longman.
  • Nguyen, D. H., Boutouil, M., Sebaibi, N., Baraud, F., & Leleyter, L. (2017). Durability of pervious concrete using crushed seashells. Construction and Building Materials, 135(2017), 137–150. https://doi.org/10.1016/j.conbuildmat.2016.12.219
  • Nguyen, D. H., Boutouil, M., Sebaibi, N., Leleyter, L., & Baraud, F. (2013). Valorization of seashell by-products in pervious concrete pavers. Construction and Building Materials., 49, 151–160. https://doi.org/10.1016/j.conbuildmat.2013.08.017
  • Nguyen, D. H., Sebaibi, N., Boutouil, M., Leleyter, L., & Baraud, F. (2014). A modified method for the design of pervious concrete mix. Construction and Building Materials, 73, 271–282. https://doi.org/10.1016/j.conbuildmat.2014.09.088
  • Nguyen, D. H. (2014a). Etude du comportement hydromécanique des bétons drinants à base de coproduits coquilliers [Thesis].
  • Nguyen, D. H. (2014b). Thèse de doctorat pour obtenir le Doctorat de l ’ Université de Caen Basse -Normandie Spécialité: Génie des Matériaux Étude du comportement hydromécanique des bétons drainants à base de coproduits coquilliers.
  • NRMCA. (2003). CIP 36 - structural lightweight concrete. Concrete, 3, 3–4.
  • Okada, K., Matsui, S., Isobe, T., Kameshima, Y., & Nakajima, A. (2008). Water-retention properties of porous ceramics prepared from mixtures of allophane and vermiculite for materials to counteract heat island effects. Ceramics International, 34(2), 345–350. https://doi.org/10.1016/j.ceramint.2006.10.006
  • Olek, J., Weiss, W. J., Neithalath, N., Marolf, A., Sell, E., & Thornton, W. (2003). Development of quiet and durable porous Portland cement concrete paving materials. Purdue University.
  • Ong, G. P., Jagadeesh, A., & Su, Y. M. (2020). Effect of pore network characteristics on non-Darcy permeability of pervious concrete mixture. Construction and Building Materials, 259, 119859. https://doi.org/10.1016/j.conbuildmat.2020.119859
  • Onstenk, E., Aguado, A., Eickschen, E., & Josa, A. (1993). Laboratory study of porous concrete for its use as top-layer of concrete pavements. Fifth International Conference on Concrete Pavement Design and RehabilitationPurdue University, School of Civil Engineering; Federal Highway Administration; Portland Cement Association; Transportation Research Board; Indiana Department of Transportation, vol. 2.
  • Pereira da Costa, F. B., Haselbach, L. M., & da Silva Filho, L. C. P. (2021). Pervious concrete for desired porosity: Influence of w/c ratio and a rheology-modifying admixture. Construction and Building Materials, 268, 121084. https://doi.org/10.1016/j.conbuildmat.2020.121084
  • Pervious, C. P. G., & Certification, C. (2013). Handbook for pervious concrete certification in Greater Kansas City Table of Contents, pp. 1–38.
  • Pigeon, M. (1981). Composition et hydratation du ciment Portland. Séminaire progrès dans le domaine du béton, Québec, (septembre 1981) pp. 36–72.
  • Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy and Buildings., 85, 389–399. https://doi.org/10.1016/j.enbuild.2014.09.076
  • Qin, Y., & Hiller, J. E. (2016). Water availability near the surface dominates the evaporation of pervious concrete. Construction and Building Materials, 111, 77–84. https://doi.org/10.1016/j.conbuildmat.2016.02.063
  • Qin, Y., He, Y., Hiller, J. E., & Mei, G. (2018). A new water-retaining paver block for reducing runoff and cooling pavement. Journal of Cleaner Production, 199, 948–956. https://doi.org/10.1016/j.jclepro.2018.07.250
  • Rao, Y., Ding, Y., Sarmah, A. K., Liu, D., & Pan, B. (2020). Vertical distribution of pore-aggregate-cement paste in statically compacted pervious concrete. Construction and Building Materials, 237, 117605. https://doi.org/10.1016/j.conbuildmat.2019.117605
  • Rizvi, R., Tighe, S. L., Henderson, V., & Norris, J. (2009). Laboratory sample preparation techniques for pervious concrete.
  • Ros, S., & Shima, H. (2013). Relationship between splitting tensile strength and compressive strength of concrete at early age with different types of cements and curing temperature histories. Proceedings of Concrete Engineering, 35, 427–432.
  • Russell, H. G., & Moreno, J. (1997). State-of-the-art report on high-strength concrete reported by ACI Committee 363.
  • Sandoval, G. F. B., Galobardes, I., Teixeira, R. S., & Toralles, B. M. (2017). Comparison between the falling head and the constant head permeability tests to assess the permeability coefficient of sustainable Pervious Concretes. Case Studies in Construction Materials., 7(August), 317–328. https://doi.org/10.1016/j.cscm.2017.09.001
  • Sandoval, G. F. B., Galobardes, I., De Moura, A. C., & Toralles, B. M. (2020). Hydraulic behavior variation of pervious concrete due to clogging. Case Studies in Construction Materials., 13, e00354. https://doi.org/10.1016/j.cscm.2020.e00354
  • Sansalone, J., Kuang, X., & Ranieri, V. (2008). Permeable pavement as a hydraulic and filtration interface for urban drainage. Journal of Irrigation and Drainage Engineering, 134(5), 666–674. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:5(666)
  • Schaefer, V. R., & Wang, K. (2006). Mix design development for pervious concrete in cold weather climates. Iowa. Dept. of Transportation. Highway Division.
  • Schaefer, V. R., Kevern, J. T., Izevbekhai, B., Wang, K., Cutler, H. E., & Wiegand, P. (2010). Construction and performance of pervious concrete overlay at Minnesota Road Research Project. Transportation Research Record: Journal of the Transportation Research Board, 2164(1), 82–88. https://doi.org/10.3141/2164-11
  • Schaefer, V. R., Kevern, J. T., & Wang, K. (2011). An integrated study of pervious concrete mixture design for wearing course applications an integrated study of pervious concrete mixture design for wearing. InTrans Project Reports, no. July, 1–138.
  • Scholz, M., & Grabowiecki, P. (2007). Review of permeable pavement systems. Building and Environment, 42(11), 3830–3836. https://doi.org/10.1016/j.buildenv.2006.11.016
  • Singh, A., Sampath, P. V., & Biligiri, K. P. (2020). A review of sustainable pervious concrete systems: Emphasis on clogging, material characterization, and environmental aspects. Construction and Building Materials, 261, 120491. https://doi.org/10.1016/j.conbuildmat.2020.120491
  • Sochala, P. (2008). Méthodes numériques pour les écoulements souterrains et couplage avec le ruissellement. Paris Est.
  • Sonebi, M., & Bassuoni, M. T. (2013). Investigating the effect of mixture design parameters on pervious concrete by statistical modelling. Construction and Building Materials, 38, 147–154. https://doi.org/10.1016/j.conbuildmat.2012.07.044
  • Sriravindrarajah, R., Wang, N. D. H., & Ervin, L. J. W. (2012). Mix design for pervious recycled aggregate concrete. International Journal of Concrete Structures and Materials, 6(4), 239–246. https://doi.org/10.1007/s40069-012-0024-x
  • Starke, P., Göbel, P., & Coldewey, W. G. (2010). Urban evaporation rates for water-permeable pavements. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 62(5), 1161–1169. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2010601634. https://doi.org/10.2166/wst.2010.390
  • Suleiman, M., Kevern, J., Schaefer, V. R., & Wang, K. (2006). Effect of compaction energy on pervious concrete properties. Concrete Technology Forum—Focus on Pervious. Concrete. National Ready Mixed Concrete. Association, Nashville, TN. no. January, pp. 23–25.
  • Sumanasooriya, M. S., & Neithalath, N. (2009). Stereology- and morphology-based pore structure descriptors of enhanced porosity (Pervious) concretes. ACI Materials Journal, 106(5), 429–438. https://doi.org/10.14359/51663143.
  • Sumanasooriya, M. S., & Neithalath, N. (2011). Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction. Cement and Concrete Composites, 33(8), 778–787. https://doi.org/10.1016/j.cemconcomp.2011.06.002
  • Sumanasooriya, M. S., Bentz, D. P., & Neithalath, N. (2010). Planar image-based reconstruction of pervious concrete pore structure and permeability prediction. ACI Materials Journal, 107(4), 413–421. https://doi.org/10.14359/51663868.
  • Sun, Z., Lin, X., & Vollpracht, A. (2018). Pervious concrete made of alkali activated slag and geopolymers. Construction and Building Materials., 189, 797–803. https://doi.org/10.1016/j.conbuildmat.2018.09.067
  • Sun, J., Zhang, J., Gu, Y., Huang, Y., Sun, Y., & Ma, G. (2019). Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression. Construction and Building Materials, 207, 440–449. https://doi.org/10.1016/j.conbuildmat.2019.02.117
  • Taheri, B. M., Ramezanianpour, A. M., Sabokpa, S., & Gapele, M. (2021). Experimental evaluation of freeze-thaw durability of pervious concrete. Journal of Building Engineering, 33(November 2019), 101617. https://doi.org/10.1016/j.jobe.2020.101617
  • Tennis, P. D., Leming, M. L., & Akers, D. J. (2004). Pervious concrete pavements.
  • Thorpe, D., & Zhuge, Y. (2010). Advantages and disadvantages in using permeable concrete pavement as a pavement construction material. Association of Researchers in Construction Management, ARCOM 2010 - Proceedings of the 26th Annual Conference, September, pp. 1341–1350.
  • Tong, B., & Tong, B. (2011). AMD-clogging effects of Portland cement pervious concrete.
  • Torres, A., Hu, J., & Ramos, A. (2015). The effect of the cementitious paste thickness on the performance of pervious concrete. Construction and Building Materials, 95, 850–859. https://doi.org/10.1016/j.conbuildmat.2015.07.187
  • Trabelsi, A. (2010). Etudes numérique et expérimentale des transferts hygrothermiques dans les matériaux poreux de construction. La Rochelle.
  • Ulloa-Mayorga, V. A., Uribe-Garcés, M. A., Paz-Gómez, D. P., Alvarado, Y. A., Torres, B., & Gasch, I. (2018). Performance of pervious concrete containing combined recycled aggregates. Ingeniería e Investigación, 38(2), 34–41. https://doi.org/10.15446/ing.investig.v38n2.67491
  • Vieira, G. L., Schiavon, J. Z., Borges, P. M., da Silva, S. R., & J. de Oliveira Andrade, J. (2020). Influence of recycled aggregate replacement and fly ash content in performance of pervious concrete mixtures. Journal of Cleaner Production, 271, 122665. https://doi.org/10.1016/j.jclepro.2020.122665
  • Wang, C.-K., & Salmon, C. G. (1979). Reinforced concrete design.
  • Wang, G., Chen, X., Dong, Q., Yuan, J., & Hong, Q. (2020). Mechanical performance study of pervious concrete using steel slag aggregate through laboratory tests and numerical simulation. Journal of Cleaner Production, 262, 121208. https://doi.org/10.1016/j.jclepro.2020.121208
  • Wang, H., Li, H., Liang, X., Zhou, H., Xie, N., & Dai, Z. (2019). Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Construction and Building Materials, 202, 387–395. https://doi.org/10.1016/j.conbuildmat.2019.01.044
  • Wang, S., Zhang, G., Wang, B., & Wu, M. (2020). Mechanical strengths and durability properties of pervious concretes with blended steel slag and natural aggregate. Journal of Cleaner Production, 271, 122590. https://doi.org/10.1016/j.jclepro.2020.122590
  • Wang, K., Schaefer, V. R., Kevern, J. T., & Suleiman, M. T. M. M. T. (2006). Development of mix proportion for functional and durable pervious concrete. NRMCA Concrete Technology Forum: Focus on Pervious Concrete, no. December, pp. 1–12. [Online]. https://fp.auburn.edu/heinmic/PerviousConcrete/PerviousMixDevelopment.pdf.
  • Weiss, P. T., Kayhanian, M., Gulliver, J. S., & Khazanovich, L. (2019). Permeable pavement in northern North American urban areas: Research review and knowledge gaps. International Journal of Pavement Engineering, 20(2), 143–162. https://doi.org/10.1080/10298436.2017.1279482
  • Xie, X., Zhang, T., Wang, C., Yang, Y., Bogush, A., Khayrulina, E., Huang, Z., Wei, J., & Yu, Q. (2020). Mixture proportion design of pervious concrete based on the relationships between fundamental properties and skeleton structures. Cement and Concrete Composites., 113(May), 103693. https://doi.org/10.1016/j.cemconcomp.2020.103693
  • Yahia, A., & Kabagire, K. D. (2014). New approach to proportion pervious concrete. Construction and Building Materials, 62, 38–46. https://doi.org/10.1016/j.conbuildmat.2014.03.025
  • Yamamoto, Y. (2005). Measures to mitigate urban heat islands. Quaterly Review, 18, 65–83.
  • Yan, K., Xu, H., Shen, G., & Liu, P. (2013). Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine. Advances in Materials Science and Engineering., 2013, 1–13. vol. https://doi.org/10.1155/2013/597257
  • Yap, S. P., Chen, P. Z. C., Goh, Y., Ibrahim, H. A., Mo, K. H., & Yuen, C. W. (2018). Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates. Journal of Cleaner Production, 181, 155–165. https://doi.org/10.1016/j.jclepro.2018.01.205
  • Yu, F., Sun, D., Hu, M., & Wang, J. (2019a). Study on the pores characteristics and permeability simulation of pervious concrete based on 2D/3D CT images. Construction and Building Materials, 200, 687–702. https://doi.org/10.1016/j.conbuildmat.2018.12.135
  • Yu, F., Sun, D., Wang, J., & Hu, M. (2019b). Influence of aggregate size on compressive strength of pervious concrete. Construction and Building Materials, 209, 463–475. https://doi.org/10.1016/j.conbuildmat.2019.03.140
  • Zaetang, Y., Wongsa, A., Sata, V., & Chindaprasirt, P. (2013). Use of lightweight aggregates in pervious concrete. Construction and Building Materials., 48, 585–591. https://doi.org/10.1016/j.conbuildmat.2013.07.077
  • Zhang, Y., Li, H., Abdelhady, A., & Yang, J. (2020). Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methods. Construction and Building Materials, 263, 120614. https://doi.org/10.1016/j.conbuildmat.2020.120614
  • Zhong, R., & Wille, K. (2015). Material design and characterization of high performance pervious concrete. Construction and Building Materials, 98, 51–60. https://doi.org/10.1016/j.conbuildmat.2015.08.027
  • Zhong, R., & Wille, K. (2016a). Compression response of normal and high strength pervious concrete. Construction and Building Materials, 109, 177–187. https://doi.org/10.1016/j.conbuildmat.2016.01.051
  • Zhong, R., & Wille, K. (2016b). Linking pore system characteristics to the compressive behavior of pervious concrete. Cement and Concrete Composites, 70, 130–138. https://doi.org/10.1016/j.cemconcomp.2016.03.016
  • Zhou, H., Li, H., Abdelhady, A., Liang, X., Wang, H., & Yang, B. (2019). Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning. Construction and Building Materials, 212, 130–139. https://doi.org/10.1016/j.conbuildmat.2019.03.310
  • Zouaghi, A. (1998). Permeability of no-fines concrete. コンクリート工学年次論文報告集, 20(2), 757–762.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.