203
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Seismic energy dissipation in reinforced concrete beam: investigating damping formulations

, , &
Pages 7771-7797 | Received 22 Jul 2021, Accepted 15 Nov 2021, Published online: 06 Dec 2021

References

  • Abbasi, M., & Moustafa, M. A. (2021). Effect of damping modeling and characteristics on seismic vulnerability assessment of multi-frame bridges. Journal of Earthquake Engineering, 25(8), 1616–1643. https://doi.org/10.1080/13632469.2019.1592791
  • Anajafi, H., Medina, R. A., & Santini-Bell, E. (2020). Effects of the improper modelling of viscous damping on the first-mode and higher-mode dominated responses of base-isolated buildings. Earthquake Engineering & Structural Dynamics, 49(1), 51–73. https://doi.org/10.1002/eqe.3223
  • Baba-Hamed, F. Z., & Davenne, L. (2020). Effect of the viscous damping on the seismic response of low-rise RC frame building. Revista Facultad de Ingeniería Universidad de Antioquia, 96, 32–43. https://doi.org/10.17533/udea.redin.20191045
  • Bernal, D. (1994). Viscous damping in inelastic structural response. Journal of Structural Engineering, 120(4), 1240–1254. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1240)
  • Bhattacharjee, S. S., & Ghrib, F. (1995). Effects of viscous damping models in earthquake stress analysis of concrete dams [Paper presentation]. 7th Canadian Conference on Earthquake Engineering (pp. 341–348), Montreal, Canada.
  • Borderie, C. L. (1991). Phénomènes unilatéraux dans un matériau endommageable: Modélisation et application à l’analyse de structures en béton [PhD thesis]. Université Paris 6.
  • Carr, A. J., Puthanpurayil, A. M., Lavan, O., & Dhakal, R. P. (2017). Damping models for inelastic time history analysis: A proposed modelling approach [Paper presentation]. 16th World Conference on Earthquake, 16WCEE 2017, Santiago, Chile.
  • Caughey, T. K., & O’Kelly, M. E. J. (1965). Classical normal modes in damped linear dynamic systems. Journal of Applied Mechanics, 32(3), 583–588. https://doi.org/10.1115/1.3627262
  • Charney, F. A., Lopez-Garcia, D., Hardyniec, A., & Ugalde, D. (2017). Modeling inherent damping in nonlinear dynamic analysis [Paper presentation]. 16th World Conference on Earthquake Engineering, Santiago, Chile.
  • Charney, F. A. (2008). Unintended consequences of modelling damping in structures. Journal of Structural Engineering, 134(4), 581–592. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(581) https://doi.org/10.1061/(ASCE)0733-9445(2008)134:4(581)
  • Charras, T. (2011). Gibiane – Documentation Cast3M 2011. CEA.
  • Chopra, A. K., & McKenna, F. (2016). Modeling viscous damping in nonlinear response history analysis of buildings for earthquake excitation: Modal damping. Earthquake Engineering & Structural Dynamics, 45(2), 193–211. https://doi.org/10.1002/eqe.2622
  • Chopra, A. K., & McKenna, F. (2017). Modeling viscous damping in nonlinear response history analysis of buildings [Paper presentation]. 16th World Conference on Earthquake Engineering, Santiago, Chile.
  • Chrisp, D. J. (1980). Damping models for inelastic structures [Master’s thesis]. University of Canterbury.
  • Correia, A. A., Almeida, J. P., & Pinho, R. (2013). Seismic energy dissipation in inelastic frames: Understanding state-of-the-practice damping models. Structural Engineering International, 23(2), 148–158. https://doi.org/10.2749/101686613X13439149157001
  • Crambuer, R., Richard, B., Ile, N., & Ragueneau, F. (2013). Experimental characterization and modeling of energy dissipation in reinforced concrete beams subjected to cyclic loading. Engineering Structures, 56, 919–934. https://doi.org/10.1016/j.engstruct.2013.06.024
  • Crandall, S. H. (1970). The role of damping in vibration theory. Journal of Sound and Vibration, 11(1), 3–18. https://doi.org/10.1016/S0022-460X(70)80105-5
  • Elnashai, A., & Di Sarno, L. (2015). Fundamentals of earthquake engineering, from source to fragility. Wiley Interscience Edition.
  • Hall, J. F. (2006). Problems encountered from the use (or misuse) of Rayleigh damping. Earthquake Engineering & Structural Dynamics, 35(5), 525–545. https://doi.org/10.1002/eqe.541
  • Heitz, T. (2017). Nonlinear Local Behaviours And Numerical Modelling Of Damping In Civil Engineering Structures In Dynamic [PhD thesis]. Université Paris-Saclay, École Normale Supérieure de Cachan. https://tel.archives-ouvertes.fr/tel-01684727
  • Heitz, T., Giry, C., Richard, B., & Ragueneau, F. (2017). How are the equivalent damping ratios modified by nonlinear engineering demand parameters? [Paper presentation]. 6th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN) (pp. 15–17), Rhodes, Greece.
  • Heitz, T., Giry, C., Richard, B., & Ragueneau, F. (2019). Identification of an equivalent viscous damping function depending on engineering demand parameters. Engineering Structures, 188, 637–649. https://doi.org/10.1016/j.engstruct.2019.03.058
  • Heitz, T., Maoult, A. L., Richard, B., Giry, C., & Ragueneau, F. (2018). Dissipations in reinforced concrete components: Static and dynamic experimental identification strategy. Engineering Structures, 163, 436–451. https://doi.org/10.1016/j.engstruct.2018.02.065
  • Jehel, P., & Léger, P. (2017). Two types of spurious damping forces potentially modelled in numerical seismic nonlinear response history analysis [Paper presentation]. 16th World Conference on Earthquake Engineering, Santiago, Chile.
  • Lanzi, A., & Luco, J. E. (2018). Elastic velocity damping model for inelastic structures. Journal of Structural Engineering, 144(6), 04018065. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002050
  • Léger, P., & Dussault, S. (1992). Seismic-energy dissipation in MDOF structures. Journal of Structural Engineering, 118(5), 1251–1269. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1251) https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1251)
  • Luco, J. E., & Lanzi, A. (2017). A new inherent damping model for inelastic time-history analyses. Earthquake Engineering & Structural Dynamics, 46(12), 1919–1939. https://doi.org/10.1002/eqe.2886
  • Luu, H., Ghorbanirenani, I., Léger, P., & Tremblay, R. (2013). Numerical modelling of slender reinforced concrete shear wall shaking table tests under high-frequency ground motions. Journal of Earthquake Engineering, 17(4), 517–542. https://doi.org/10.1080/13632469.2013.767759
  • Nakamura, N. (2019). Application of causal hysteretic damping model to nonlinear seismic response analysis of super high-rise building: Substitution for viscous damping including tangent stiffness proportional damping. Journal of Structural and Construction Engineering (Transactions of AIJ), 84(759), 597–607. https://doi.org/10.3130/aijs.84.597
  • Pegon, P. (1994). A Timoshenko simple beam element in Castem 2000 (Rapport technique). Applied Mechanics Unit, Institute for Safety Technology, Joint Research Centre, Commission of the European Communities, I-21020 ISPRA (VA).
  • Petrini, L., Maggi, C., Priestley, M. J. N., & Calvi, G. M. (2008). Experimental verification of viscous damping modelling for inelastic time history analyzes. Journal of Earthquake Engineering, 12(sup1), 125–145. https://doi.org/10.1080/13632460801925822
  • Priestley, M. J. N., & Grant, D. N. (2005). Viscous damping in seismic design and analysis. Journal of Earthquake Engineering, 9(sup2), 229–255. https://doi.org/10.1142/S1363246905002365
  • Rayleigh, J. W. S. B. (1896). The theory of sound – Volume II (Vol. 2). Macmillan.
  • Richard, B., & Ragueneau, F. (2013). Continuum damage mechanics based model for quasi brittle materials subjected to cyclic loadings: Formulation, numerical implementation and applications. Engineering Fracture Mechanics, 98, 383–406. https://doi.org/10.1016/j.engfracmech.2012.11.013 https://doi.org/10.1016/j.engfracmech.2012.11.013
  • Richard, B., Ragueneau, F., Cremona, C., & Adelaide, L. (2010). Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding. Engineering Fracture Mechanics, 77(8), 1203–1223. https://doi.org/10.1016/j.engfracmech.2010.02.010 https://doi.org/10.1016/j.engfracmech.2010.02.010
  • Ryan, K. L., & Polanco, J. (2008). Problems with Rayleigh damping in base-isolated buildings. Journal of Structural Engineering, 134(11), 1780–1784. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:11(1780)
  • Salehi, M., & Sideris, P. (2018). An enhanced Rayleigh damping model for dynamic analysis of inelastic structures [Paper presentation]. 2018 Structure Congress, Fort-Worth, Texas, United States.
  • Smyrou, E., Priestley, M. J. N., & Carr, A. J. (2011). Modelling of elastic damping in nonlinear time-history analyses of cantilever RC walls. Bulletin of Earthquake Engineering, 9(5), 1559–1578. https://doi.org/10.1007/s10518-011-9286-y
  • Sousa, R., Almeida, J. P., Correia, A. A., & Pinho, R. (2020). Shake table blind prediction tests: Contributions for improved fiber-based frame modelling. Journal of Earthquake Engineering, 24(9), 1435–1476. https://doi.org/10.1080/13632469.2018.1466743
  • Spacone, E., Filippou, F. C., & Taucer, F. F. (1996). Fibre beam–column model for non-linear analysis of R/C frames: Part I. Earthquake Engineering & Structural Dynamics, 25(7), 711–725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7⟨711::AID-EQE576⟩3.0.CO;2-9 https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  • Stevenson, J. D. (1980). Structural damping values as a function of dynamic response stress and deformation levels. Nuclear Engineering and Design, 60(2), 211–237. https://doi.org/10.1016/0029-5493(80)90238-1
  • Uang, C.-M., & Bertero, V. V. (1990). Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics, 19(1), 77–90. https://doi.org/10.1002/eqe.4290190108
  • Wilson, E. L., & Penzien, J. (1972). Evaluation of orthogonal damping matrices. International Journal for Numerical Methods in Engineering, 4(1), 5–10. https://doi.org/10.1002/nme.1620040103
  • Zareian, F., & Medina, R. A. (2010). A practical method for proper modelling of structural damping in inelastic plane structural systems. Computers & Structures, 88(1–2), 45–53. https://doi.org/10.1016/j.compstruc.2009.08.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.