135
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Behaviour of heat damaged repaired reinforced SCC cantilever beam using carbon fiber reinforced polymer rope

, &
Pages 8002-8017 | Received 23 Jun 2021, Accepted 06 Dec 2021, Published online: 15 Dec 2021

References

  • Abdulrahman, A. S., & Kadir, M. R. A. (2021). Behavior and flexural strength of fire-damaged high-strength reinforced rectangular concrete beams with tension or compression zones exposed to fire repaired with CFRP sheets. Case Studies in Construction Materials, 15, e00779. https://doi.org/10.1016/j.cscm.2021.e00779
  • Al-Abdwais, A. H., & Al-Mahaidi, R. S. (2020). Performance of reinforced concrete beams strengthened with NSM CFRP composites for flexure using cement-based adhesives. Structures, 27, 1446–1457. https://doi.org/10.1016/j.istruc.2020.07.047
  • Al-Obaidi, S., Saeed, Y. M., & Rad, F. N. (2020). Flexural strengthening of reinforced concrete beams with NSM-CFRP bars using mechanical interlocking. Journal of Building Engineering, 31, 101422. https://doi.org/10.1016/j.jobe.2020.101422
  • American Concrete Institute. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary. ACI 318-14. http://aghababaie.usc.ac.ir/files/1506505203365.pdf
  • Annerel, E., Taerwe, L., & Vandevelde, P. (2007, September 3–5). Assessment of temperature increase and residual strength of SCC after exposure. In G. De Schutter & V. Boel (Eds.), The Fifth International RILEM Symposium on Self-Compacting Concrete (pp. 715–720). RILEM Publications SARL.
  • Ashteyat, A., Al Rjoub, Y., Obaidat, A. T., & Dagamseh, H. (2019). Strengthening and repair of one-way and two-way self-compacted concrete slabs using near-surface-mounted carbon-fiber-reinforced polymers. Advances in Structural Engineering, 22(11), 2435–2448. https://journals.sagepub.com/doi/abs/101177/1369433219843649.
  • Ashteyat, A., Haddad, R., & Obaidat, Y. (2020). Repair of heat-damaged SCC cantilever beams using SNSM CFRP strips. Structures, 24, 151–162. https://doi.org/10.1016/j.istruc.2020.01.005
  • Bilotta, A., Ceroni, F., Di Ludovico, M., Nigro, E., Pecce, M., & Manfredi, G. (2011). Bond efficiency of EBR and NSM FRP systems for strengthening concrete members. Journal of Composites for Construction, 15(5), 757e72. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000204
  • Choi, E. G., Shin, Y., & Kim, H. S. (2013). Structural damage evaluation of reinforced concrete beams exposed to high temperatures. Journal of Fire Protection Engineering, 32(2), 135–151.
  • De Domenico, D., Fuschi, P., Pardo, S., & Pisano, A. A. (2014). Strengthening of steel-reinforced concrete structural elements by externally bonded FRP sheets and evaluation of their load carrying capacity. Composite Structures, 118, 377–384. https://doi.org/10.1016/j.compstruct.2014.07.040
  • De Lorenzis, L., & Teng, J. G. (2007). Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures. Composites Part B: Engineering, 38(2), 119–143. https://doi.org/10.1016/j.compositesb.2006.08.003
  • DeJong, M. J., & Ulm, F. J. (2007). The nanogranular behavior of C-S-H at elevated temperatures (up to 700 °C). Cement and Concrete Research, 37(1), 1–12. https://doi.org/10.1016/j.cemconres.2006.09.006
  • EFNARC. (2005). The European guidelines for self-compacting concrete: Specification, production and use. https://www.theconcreteinitiative.eu/images/ECP_Documents/EuropeanGuidelinesSelfCompactingConcrete.pdf
  • El-Gamal, S. E., Al-Nuaimi, A., Al-Saidy, A., & Al-Lawati, A. (2016). Efficiency of near surface mounted technique using fiber reinforced polymers for the flexural strengthening of RC beams. Construction and Building Materials, 118, 52–62. https://doi.org/10.1016/j.conbuildmat.2016.04.152
  • Fares, H., Noumowe, A., & Remond, S. (2009). Self-consolidating concrete subjected to high temperature: Mechanical and physical properties. Cement and Concrete Research, 39(12), 1230–1238. https://doi.org/10.1016/j.cemconres.2009.08.001
  • Haddad, R. H., & Yaghmour, E. M. (2020). Retrofitting heat-damaged concrete beams using different profiles of side NSM CFRP strips. Structures, 28, 2232–2243. https://doi.org/10.1016/j.istruc.2020.10.027
  • Haddad, R. H., Al-Saleh, R. H., & Al-Akhras, N. M. (2008). Effect of elevated temperature on bond between steel reinforcement and fiber reinforced concrete. Fire Safety Journal, 43(5), 334–343. https://doi.org/10.1016/j.firesaf.2007.11.002
  • Haddad, R., Al-Mekhlafy, N., & Ashteyat, A. (2011). Repair of heat-damaged reinforced concrete slabs using fibrous composite materials. Construction and Building Materials, 25(3), 1213–1221. https://doi.org/10.1016/j.conbuildmat.2010.09.033
  • Hussain, M., Sharif, A., Basunbul, I. A., Baluch, M. H., & Al-Sulaimani, G. J. (1995). Flexural behavior of pre-cracked reinforced concrete beams strengthened externally by steel plates. ACI Structural Journal, 92(1), 14–22.
  • Jadooe, A., Al-Mahaidi, R., & Abdouka, K. (2017). Experimental and numerical study of strengthening of heat-damaged RC beams using NSM CFRP strips. Construction and Building Materials, 154, 899–913. https://doi.org/10.1016/j.conbuildmat.2017.07.202
  • Kodur, V. K. R., & Agrawal, A. (2016). An approach for evaluating residual capacity of reinforced concrete beams exposed to fire. Engineering Structures, 110, 293–306. https://doi.org/10.1016/j.engstruct.2015.11.047
  • Liu, X., Ye, G., De Schutter, G., Yuan, Y., & Taerwe, L. (2008). On the mechanism of polypropylene fibers in preventing fire spalling in self-compacting and high performance cement paste. Cement and Concrete Research, 38(4), 487–499. https://doi.org/10.1016/j.cemconres.2007.11.010
  • Obaidat, A. T. (2021). Flexural behavior of reinforced concrete beam using CFRP hybrid system. European Journal of Environmental and Civil Engineering, 1934552. https://doi.org/10.1080/19648189.2021.
  • Obaidat, A. T., Ashteyat, A. M., Hanandeh, S., & Al-Btoush, A. Y. (2020). Behavior of heat damaged circular reinforced concrete columns repaired using carbon fiber reinforced polymer rope. Journal of Building Engineering, 31, 101424. https://doi.org/10.1016/j.jobe.2020.101424
  • Obaidat, A. T., Ashteyat., Obaidat, Y. T., Al-Btoush, A., & Hanandeh, S. (2021). Experimental and numerical study of strengthening and repairing heat-damaged RC circular column using hybrid system of CFRP. Case Studies in Construction Materials, 15, e00742. https://doi.org/10.1016/j.cscm.2021.e00742
  • Obaidat, Y. T., Abu-Farsakh, G., & Ashteyat, A. (2019). Retrofitting of partially damaged reinforced concrete beam-column joints using various plate-configurations of CFRP under cyclic loading. Construction and Building Materials, 198(1), 313–322. https://doi.org/10.1016/j.conbuildmat.2018.11.267
  • Obaidat, Y. T., Ashteyat, A. M., & Obaidat, A. T. (2019). Performance of RC beam strengthened with NSM-CFRP strip under pure torsion: Experimental and numerical study. International Journal of Civil Engineering, 18, 585–590. https://doi.org/10.1007/s40999-019-00487-2.
  • Obaidat, Y. T., Haddad, R. H., & Abdulwahab, M. A. (2018). Innovative strengthening schemes of concrete cantilever beams using CFRP sheets: End anchorage effect. Construction and Building Materials, 190, 1215–1225. https://doi.org/10.1016/j.conbuildmat.2018.09
  • Obaidat, Y., Ashteyat, A., Obaidat, A., & Abu-Lebdeh, M. N. (2021). Bond characteristics between concrete and near-surface mounted carbon fiber reinforced polymer cords. Journal of Structural Integrity and Maintenance, 6(4), 223–236. https://doi.org/10.1080/24705314.2021.1950379
  • Obaidat, Y., Ashteyat, A., Obaidat, A., & Alfaris, S. (2020). A new technique for repairing reinforced concrete columns. Journal of Building Engineering, 30, 101256. https://doi.org/10.1016/j.jobe.2020.101256
  • Obaidat, Y., Barham, W., & Abdelrahman, B. (2020). Effect of elevated temperature on the bond behavior between near Surface Mounted-Carbon Fiber Reinforced Polymers strips and Recycled Aggregate concrete. Construction and Building Materials, 251, 118970. https://doi.org/10.1016/j.conbuildmat.2020.118970
  • Obaidat, Y., Barham, W., Obaidat, A. T., & Attar, K. (2021). Behavior of NSM CFRP reinforced concrete columns: Experimental and analytical work. Case Studies in Construction Materials, 15, e00589. https://doi.org/10.1016/j.cscm.2021.e00589
  • Persson, B. (2004). Fire resistance of self-compacting concrete, SCC. Materials and Structures, 37(9), 575–584. https://doi.org/10.1007/BF02483286
  • Rahimi, H., & Hutchinson, A. (2001). Concrete beams strengthened with externally bonded FRP plates. Journal of Composites for Construction, 5(1), 44–56. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(44)
  • Rajah Surya, T., Prakash, M., Satyanarayanan, K. S., Keneth Celestine, A., & Parthasarathi, N. (2020). Compressive strength of self compacting concrete under elevated temperature. Materials Today: Proceedings, 40(Suppl 1), S83–S87. https://doi.org/10.1016/j.matpr.2020.03.746
  • Saadah, M., Ashteyat, A., & Murad, Y. (2021). Shear strengthening of RC beams using side near surface mounted CFRP ropes and strips. Structures, 32, 380–390. https://doi.org/10.1016/j.istruc.2021.03.038
  • Seo, S., Feo, L., & Hui, D. (2013). Bond strength of near surface mounted FRP plates for retrofit of concrete structures. Composite Structures, 95, 719–727. https://doi.org/10.1016/j.compstruct.2012.08.038
  • Sharaky, I. A., Torres, L., Comas, J., & Barris, C. (2014). Flexural response of reinforced concrete (RC) beams strengthened with near surface mounted (NSM) fibre reinforced polymer (FRP) bars. Composite Structures, 109, 8–22. https://doi.org/10.1016/j.compstruct.2013.10.051
  • Suliman, A. K. S., Jia, Y., & Mohammed, A. A. A. (2021). Experimental evaluation of factors affecting the behaviour of reinforced concrete beams strengthened by NSM CFRP strips. Structures, 32, 632–640. https://doi.org/10.1016/j.istruc.2021.03.058
  • Xu, Y., Bo, W., Jiang, M., & Huang, X. (2012). Experimental study on residual flexural behavior of reinforced concrete beams after exposure to fire. Advances in Materials Research, 457, 183–187.
  • Wu, Y., & Wu, B. (2014). Residual compressive strength and freeze–thaw resistance of ordinary concrete after high temperature. Construction and Building Materials, 54, 596–604.
  • Zhai, Y., Deng, Z., Li, N., & Xu, R. (2014). Study on compressive mechanical capability of concrete after high temperature exposure and thermo-damage constitutive model. Construction and Building Materials, 68, 777–782. https://doi.org/10.1016/j.conbuildmat.2014.06.052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.