295
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Bearing capacity of single stone column in clay using finite element limit analysis

&
Pages 7958-7971 | Received 09 Aug 2021, Accepted 13 Dec 2021, Published online: 24 Dec 2021

References

  • Abd-Elhamed, A., & Mahmoud, S. (2019). Seismic response evaluation of structures on improved liquefiable soil. European Journal of Environmental and Civil Engineering, 25, 1–23. https://doi.org/10.1080/19648189.2019.1595738.
  • Ambily, A. P., & Gandhi, S. R. (2007). Behavior of stone columns based on experimental and FEM analysis. Journal of Geotechnical and Geoenvironmental Engineering, 133(4), 405–415. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405)
  • Ang, A. H. S., & Tang, W. H. (2007). Probability concepts in engineering: Emphasis on applications to civil and environmental engineering (2nd ed.). Wiley.
  • Bergado, D. T., & Lam, F. L. (1987). Full scale load test of granular piles with different densities and different proportions of gravel and sand on soft bangkok clay”. Soils and Foundations, 27(1), 86–93. https://doi.org/10.3208/sandf1972.27.86
  • Bhattacharya, P., & Kumar, J. (2013). Horizontal pullout capacity of a group of two vertical plate anchors in clay. Geomechanics and Engineering, 5(4), 299–312. https://doi.org/10.12989/gae.2013.5.4.299
  • Bong, T., Stuedlein, A. W., Martin, J., & Kim, B. I. (2020). Bearing capacity of spread footings on aggregate pier–reinforced clay: Updates and stress concentration. Canadian Geotechnical Journal, 57(5), 717–727. https://doi.org/10.1139/cgj-2019-0026
  • Çadır, C. C., Vekli, M., & Şahinkaya, F. (2021). Numerical analysis of a finite slope improved with stone columns under the effect of earthquake force. Natural Hazards, 106(1), 173–211. https://doi.org/10.1007/s11069-020-04456-0
  • Drescher, A., & Detournay, E. (1993). Limit load in translational failure mechanisms for associative and non-associative materials. Géotechnique, 43(3), 443–456. https://doi.org/10.1680/geot.1993.43.3.443
  • Greenwood, D. (1970). Mechanical improvement of soils below ground surface. Proceedings of the institution of civil engineers, London/UK.
  • Gu, M., Cui, J., Yuan, J., Wu, Y., Li, Y., & Mo, H. (2020). The stress and deformation of stone column-improved soft clay by discrete element modelling. European Journal of Environmental and Civil Engineering, 1–17. https://doi.org/10.1080/19648189.2020.1715851
  • Hughes, J., & Withers, N. (1974). Reinforcing of soft cohesive soils with stone columns. Ground Engineering, 7(3), 42–49.
  • Keawsawasvong, S., & Ukritchon, B. (2017). Undrained stability of an active planar trapdoor in non-homogeneous clays with a linear increase of strength with depth. Computers and Geotechnics., 81, 284–293. https://doi.org/10.1016/j.compgeo.2016.08.027
  • Keshavarz, A., Beygi, M., & Vali, R. (2019). Undrained seismic bearing capacity of strip footing placed on homogeneous and heterogeneous soil slopes by finite element limit analysis. Computers and Geotechnics., 113, 103094. https://doi.org/10.1016/j.compgeo.2019.103094
  • Khatri, V. N., Kumar, J., & Das, P. P. (2020). Bearing capacity of ring footings placed on dense sand underlain by a loose sand layer. European Journal of Environmental and Civil Engineering, 1–17. https://doi.org/10.1080/19648189.2020.1805643
  • Kim, B. I., & Lee, S. H. (2005). Comparison of bearing capacity characteristics of sand and gravel compaction pile treated ground. KSCE Journal of Civil Engineering, 9(3), 197–203. https://doi.org/10.1007/BF02829050
  • Krabbenhoft, K., Lyamin, A., & Krabbenhoft, J. (2019). Optum computational engineering (OPTUM G2). https://optumce.com.
  • Kumar, A., Kumari, S., & Sawant, V. A. (2020). Numerical investigation of stone column improved ground for mitigation of liquefaction. International Journal of Geomechanics, 20(9), 04020144. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001758
  • Lemons, D. S. (2017). A student’s guide to dimensional analysis (1st ed.). Cambridge University Press.
  • Li, Y., Li, W., & Xu, S. (2020). Deformation analysis of geosynthetic-encased stone column-supported embankments using cavity expansion model. European Journal of Environmental and Civil Engineering, 1–21. https://doi.org/10.1080/19648189.2020.1775707
  • Mitchell, J. K. (1981). Soil improvement-state of the art report. Proceedings of the 10th international conference on soil mechanics and foundation engineering, Session 12, Stockholm, (pp. 506–565).
  • Najjar, S. S. (2013). A state-of-the-art review of stone/sand-column reinforced clay systems”. Geotechnical and Geological Engineering, 31(2), 355–386. https://doi.org/10.1007/s10706-012-9603-5
  • Ng, K. (2018). Numerical study on bearing capacity of single stone column. International Journal of Geo-Engineering, 9(1), 1–10. https://doi.org/10.1186/s40703-018-0077-z
  • Pulko, B., & Majes, B. (2006). Analytical method for the analysis of stone-columns according to the rowe dilatancy theory. Acta Geotechnica Slovenica, 3, 36–45. http://fgserver6.fg.um.si/journal-ags/2006-1/article-3.asp
  • Sadaoui, O., & Bahar, R. (2017). Field measurements and back calculations of settlements of structures founded on improved soft soils by stone columns. European Journal of Environmental and Civil Engineering, 23, 85–111. https://doi.org/10.1080/19648189.2016.1271358
  • Schaefer, V., Berg, R., Collin, J., Christopher, B., DiMaggio, J., Filz, G., Bruce, D., & Ayala, D. (2017). Ground modification, methods reference manual—volume II. FHWA.
  • Shafiee, A. H., Zafarani, H., & Jahanandish, M. (2016). Model selection for correlating VS30 with average shear-wave velocities at lower depths based on the Iranian data. Bulletin of the Seismological Society of America., 106(1), 289–299. https://doi.org/10.1785/0120150257
  • Sivakumar, V., McKelvey, D., Graham, J., & Hughes, D. (2004). Triaxial tests on model sand columns in clay. Canadian Geotechnical Journal, 41(2), 299–312. https://doi.org/10.1139/t03-097
  • Sloan, S. W. (2013). Geotechnical stability analysis. Géotechnique, 63(7), 531–572. https://doi.org/10.1680/geot.12.RL.001
  • Stuedlein, A. W., & Holtz, R. D. (2013). Bearing capacity of spread footings on aggregate pier reinforced clay. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 49–58. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000748
  • Vali, R., Beygi, M., Saberian, M., & Li, J. (2019). Bearing capacity of ring foundation due to various loading positions by finite element limit analysis. Computers and Geotechnics, 110, 94–113. https://doi.org/10.1016/j.compgeo.2019.02.020
  • Wang, G. (2009). Consolidation of soft clay foundations reinforced by stone columns under time-dependent loadings. Journal of Geotechnical and Geoenvironmental Engineering, 135(12), 1922–1931. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000178

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.