103
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Multi-scale analysis of mechanical and thermal behaviour of mortars incorporating phase change materials

, , , &
Pages 625-646 | Received 23 Jul 2021, Accepted 25 Mar 2022, Published online: 09 Apr 2022

References

  • Aguayo, M., Das, S., Castro, C., Kabay, N., Sant, G., & Neithalath, N. (2017). Porous inclusions as hosts for phase change materials in cementitious composites: Characterization, thermal performance, and analytical models. Construction and Building Materials, 134, 574–584. https://doi.org/10.1016/j.conbuildmat.2016.12.185
  • Bahrar, M., Djamai, Z. I., Mankibi, M. E. L., Si Larbi, A., & Salvia, M. (2018). Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. Sustainable Cities and Society, 41, 455–468. https://doi.org/10.1016/j.scs.2018.06.014.
  • Berardi, U., & Soudian, S. (2019). Experimental investigation of latent heat thermal energy storage using PCMs with different melting temperatures for building retrofit. Energy and Buildings, 185, 180–195. https://doi.org/10.1016/j.enbuild.2018.12.016
  • Castell, A., & Farid, M. M. (2014). Experimental validation of a methodology to assess PCM effectiveness in cooling building envelopes passively. Energy and Buildings, 81, 59–71. https://doi.org/10.1016/j.enbuild.2014.06.011
  • CEN NF EN 1097-6. (2001). Essais pour déterminer les caractéristiques mécaniques et physiques des granulats, Partie 6 Détermination La Masse Vol. Réelle Du Coeff. d’absorption d’eau. Retreived March 1, 2021 https://www.lcbtp.com/prestation/nf-en-1097-6/.
  • CEN NF P18-459. (2010). Béton – Essai pour béton durci – Essai de porosité et de masse volumique. https://norminfo.afnor.org/norme/NFP18-459/beton-essai-pour-beton-durci-essai-de-porosite-et-de-masse-volumique/75745.
  • Chiffres clés de l’énergie. (2019). Commissariat générale au développement durable.
  • Cunha, S., Aguiar, J. B., & Tadeu, A. (2016). Thermal performance and cost analysis of mortars made with PCM and different binders. Construction and Building Materials, 122, 637–648. https://doi.org/10.1016/j.conbuildmat.2016.06.114
  • Cunha, S., Silva, M., & Aguiar, J. (2020). Behavior of cementitious mortars with direct incorporation of non-encapsulated phase change material after severe temperature exposure. Construction and Building Materials, 230, 117011. https://doi.org/10.1016/j.conbuildmat.2019.117011
  • Djamai, Z. I., Salvatore, F., Si Larbi, A., & Ca, G. (2020). A new PCM-TRC composite: A mechanical and physicochemical investigation. Cement and Concrete Research, 135, 106119. https://doi.org/10.1016/j.cemconres.2020.106119
  • Djamai, Z. I., Salvatore, F., Si Larbi, A., Cai, G., & Mankibi, E. (2019). Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars. Cement and Concrete Research, 119, 51–63. https://doi.org/10.1016/j.cemconres.2019.02.002.
  • Drissi, S., Eddhahak, A., Caré, S., & Neji, J. (2015). Thermal analysis by DSC of Phase Change Materials, study of the damage effect. Journal of Building Engineering, 1, 13–19. https://doi.org/10.1016/j.jobe.2015.01.001
  • Eddhahak, A., Drissi, S., Colin, J., Caré, S., & Neji, J. (2014). Effect of phase change materials on the hydration reaction and kinetic of PCM-mortars. Journal of Thermal Analysis and Calorimetry, 117(2), 537–545. https://doi.org/10.1007/s10973-014-3844-x
  • Essid, N., Loulizi, A., & Neji, J. (2019). Compressive strength and hygric properties of concretes incorporating microencapsulated phase change material. Construction and Building Materials, 222, 254–262. https://doi.org/10.1016/j.conbuildmat.2019.06.156
  • EU 2012/27. (2020). Assessment of the progress made by Member States towards the implementation of the Energy Efficiency Directive 2012/27/EU.
  • EU 2018/1999. (2020). Report on the State of the energy union pursuant to regulation (EU) 2018/1999 on governance of the energy union and climate action.
  • Farooq, M. A., Sato, Y., Ayano, T., & Niitani, K. (2017). Experimental and numerical investigation of static and fatigue behavior of mortar with blast furnace slag sand as fine aggregates in air and water. Construction and Building Materials, 143, 429–443. https://doi.org/10.1016/j.conbuildmat.2017.03.147
  • Haurie, L., Serrano, S., Bosch, M., Fernandez, A. I., & Cabeza, L. F. (2016). Single layer mortars with microencapsulated PCM: Study of physical and thermal properties, and fire behaviour. Energy and Buildings, 111, 393–400. https://doi.org/10.1016/j.enbuild.2015.11.028
  • Joulin, A., Zalewski, L., Lassue, S., & Naji, H. (2014). Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material. Applied Thermal Engineering, 66(1–2), 171–180. https://doi.org/10.1016/j.applthermaleng.2014.01.027
  • Junco, C., Rodríguez, A., Calderón, V., Muñoz-Rupérez, C., & Gutiérrez-González, S. (2018). Fatigue durability test of mortars incorporating polyurethane foam wastes. Construction and Building Materials, 190, 373–381. https://doi.org/10.1016/j.conbuildmat.2018.09.161
  • Kastiukas, G., Zhou, X., & Castro-Gomes, J. (2016). Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder. Construction and Building Materials, 110, 201–210. https://doi.org/10.1016/j.conbuildmat.2016.02.029
  • Kheradmand, M., Azenha, M., de Aguiar, J. L., & Castro-Gomes, J. (2016). Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings. Energy, 94, 250–261. https://doi.org/10.1016/j.energy.2015.10.131
  • Kheradmand, M., Azenha, M., De Aguiar, J. L. B., & Krakowiak, K. J. (2014). Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials. Energy and Buildings, 84, 526–536. https://doi.org/10.1016/j.enbuild.2014.08.010
  • Kim, S., Kim, S., Chang, S. J., Chung, O., & Jeong, S. G. (2014). Thermal characteristics of mortar containing hexadecane/xGnP SSPCM and energy storage behaviors of envelopes integrated with enhanced heat storage composites for energy efficient buildings. Energy and Buildings, 70, 472–479. https://doi.org/10.1016/j.enbuild.2013.11.087
  • Li, P., Gao, X., Wang, K., Tam, V. W. Y., & Li, W. (2020). Hydration mechanism and early frost resistance of calcium sulfoaluminate cement concrete. Construction and Building Materials, 239, 117862. https://doi.org/10.1016/j.conbuildmat.2019.117862
  • Li, W., Ling, C., Jiang, Z., & qian Yu, Q. (2019). Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete. Construction and Building Materials, 203, 621–632. https://doi.org/10.1016/j.conbuildmat.2019.01.098
  • Li, L., Yu, H., Wang, X., & Zheng, S. (2016). Thermal analysis of melting and freezing processes of phase change materials (PCMs) based on dynamic DSC test. Energy and Buildings, 130, 388–396. https://doi.org/10.1016/j.enbuild.2016.08.058
  • Lucas, S. S., Ferreira, V. M., & De Aguiar, J. L. B. (2013). Latent heat storage in PCM containing mortars – Study of microstructural modifications. Energy and Buildings, 66, 724–731. https://doi.org/10.1016/j.enbuild.2013.07.060
  • Marani, A., & Nehdi, M. L. (2019). Integrating phase change materials in construction materials: Critical review. Construction and Building Materials, 217, 36–49. https://doi.org/10.1016/j.conbuildmat.2019.05.064
  • Memon, S. A., Cui, H. Z., Zhang, H., & Xing, F. (2015). Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete. Applied Energy, 139, 43–55. https://doi.org/10.1016/j.apenergy.2014.11.022
  • Navarro, L., De Gracia, A., Castell, A., Álvarez, S., & Cabeza, L. F. (2015). PCM incorporation in a concrete core slab as a thermal storage and supply system: Proof of concept. Energy and Buildings, 103, 70–82. https://doi.org/10.1016/j.enbuild.2015.06.028
  • Nayak, S., Lyngdoh, G. A., & Das, S. (2019). Influence of microencapsulated phase change materials (PCMs) on the chloride ion diffusivity of concretes exposed to Freeze-thaw cycles: Insights from multiscale numerical simulations. Construction and Building Materials, 212, 317–328. https://doi.org/10.1016/j.conbuildmat.2019.04.003
  • Neville, A. M. (2011). Properties of concrete (5th ed.). WordPress. https://igitgeotech.files.wordpress.com/2014/10/properties-of-concrete-by-a-m-neville.pdf.
  • Pacheco-Torgal, F., Granqvist, C. G., Jelle, B. P., Vanoli, G. P., Bianco, N., & Kurnitski, J. (Eds.). (2017). Cost-effective energy efficient building retrofitting: Materials, technologies, optimization and case studies, 1.
  • Ramakrishnan, S., Sanjayan, J., Wang, X., Alam, M., & Wilson, J. (2015). A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Applied Energy, 157, 85–94. https://doi.org/10.1016/j.apenergy.2015.08.019
  • Sakulich, A. R., & Bentz, D. P. (2012). Incorporation of phase change materials in cementitious systems via fine lightweight aggregate. Construction and Building Materials, 35, 483–490. https://doi.org/10.1016/j.conbuildmat.2012.04.042
  • Sari, A. (2016). Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Conversion and Management, 117, 132–141. https://doi.org/10.1016/j.enconman.2016.02.078.
  • Sayyar, M., Weerasiri, R. R., Soroushian, P., & Lu, J. (2014). Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions. Energy and Buildings, 75, 249–255. https://doi.org/10.1016/j.enbuild.2014.02.018
  • Shi, X., Memon, S. A., Tang, W., Cui, H., & Xing, F. (2014). Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy and Buildings, 71, 80–87. https://doi.org/10.1016/j.enbuild.2013.12.001
  • Tuncel, E. Y., & Pekmezci, B. Y. (2018). A sustainable cold bonded lightweight PCM aggregate production: Its effects on concrete properties. Construction and Building Materials, 181, 199–216. https://doi.org/10.1016/j.conbuildmat.2018.05.269
  • Wang, X., Yu, H., Li, L., & Zhao, M. (2016). Experimental assessment on a kind of composite wall incorporated with shape-stabilized phase change materials (SSPCMs). Energy and Buildings, 128, 567–574. https://doi.org/10.1016/j.enbuild.2016.07.031
  • Wei, Z., Falzone, G., Wang, B., Thiele, A., Puerta-Falla, G., Pilon, L., Neithalath, N., & Sant, G. (2017). The durability of cementitious composites containing microencapsulated phase change materials. Cement and Concrete Composites, 81, 66–76. https://doi.org/10.1016/j.cemconcomp.2017.04.010
  • Yeon, J. H., & Kim, K. K. (2018). Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement. Construction and Building Materials, 177, 202–209. https://doi.org/10.1016/j.conbuildmat.2018.05.113
  • Young, B. A., Wei, Z., Rubalcava-Cruz, J., Falzone, G., Kumar, A., Neithalath, N., Sant, G., & Pilon, L. (2017). A general method for retrieving thermal deformation properties of microencapsulated phase change materials or other particulate inclusions in cementitious composites. Materials & Design, 126, 259–267. https://doi.org/10.1016/j.matdes.2017.04.023
  • Zhang, Z., Shi, G., Wang, S., Fang, X., & Liu, X. (2013). Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renewable Energy, 50, 670–675. https://doi.org/10.1016/j.renene.2012.08.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.